Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD=BD
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên \(HE=AE=EC=\dfrac{AC}{2}\)(3)
Ta có: HD=AD
nên D nằm trên đường trung trực của AH(1)
Ta có: HE=AE
nên E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
b) Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
hay DE//HF
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{AC}{2}\)(4)
Từ (3) và (4) suy ra DF=HE
Xét tứ giác DEFH có DE//HF(cmt)
nên DEFH là hình thang
mà DF=HE(cmt)
nên DEFH là hình thang cân
a) Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD=BD
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên \(HE=AE=EC=\dfrac{AC}{2}\)(3)
Ta có: HD=AD
nên D nằm trên đường trung trực của AH(1)
Ta có: HE=AE
nên E nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra DE là đường trung trực của AH
b) Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC
hay DE//HF
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{AC}{2}\)(4)
Từ (3) và (4) suy ra DF=HE
Xét tứ giác DEFH có DE//HF(cmt)
nên DEFH là hình thang
mà DF=HE(cmt)
nên DEFH là hình thang cân
a) Xét ΔABC có
P là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: PN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: PN//BC và \(PN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay QN//HM; PN//HM
Xét tứ giác MNQH có QN//HM(cmt)
nên MNQH là hình thang có hai đáy là QN và HM(Định nghĩa hình thang)
Hình thang MNQH(QN//HM) có \(\widehat{QHM}=90^0\)(gt)
nên MNQH là hình thang vuông(Định nghĩa hình thang vuông)
b) Xét ΔABC có
P là trung điểm của AB(gt)
M là trung điểm của BC(gt)
Do đó: PM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: PM//AC và \(PM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Ta có: ΔAHC vuông tại H(Gt)
mà HN là đường trung tuyến ứng với cạnh huyền AC(N là trung điểm của AC)
nên \(HN=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có PN//HM(cmt)
nên MNPH là hình thang có hai đáy là PN và HM(Định nghĩa hình thang)
Hình thang MNPH có MP=HN(cmt)
nên MHPH là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a) gọi I là giao điểm của AH và PN
xét tam giác ABC có
AP=BF và AN=NC
Do đó PN là đường trung bình của tam giác ABC
==>PN//BC mà AH vuông góc BC ==>PN vuông góc AH (1)
ta có : PN//BC mà PI thuộc PN ==> PI//BC
Xét tam giác AHB có
PI//BC và AP=BP
==>AI=IH (2)
TỪ (1)(2) ==)PN là đg trung trực của AH
a: Ta có: ΔAHB vuông tại H
mà HP là đường trung tuyến
nên HP=AP
hay P nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AN
hay N nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra PN là đường trung trực của AH