Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg DIE và tg CID có
\(\widehat{CDE}=\widehat{BCD}\) (góc so le trong)
\(\widehat{BED}=\widehat{CBE}\) (góc so le trong)
=> tg DIE đồng dạng tg CID (g.g.g)
b/
Ta có DE//BC
Xét tg ABM có \(\dfrac{DN}{BM}=\dfrac{AN}{AM}\) (1)
Xét tg ACM có \(\dfrac{EN}{CM}=\dfrac{AN}{AM}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{DN}{BM}=\dfrac{EN}{CM}\) mà BM=CM => DN=EN
c/
Nôi A với I cắt DE tại N'; cắt BC tại M'
Ta có
\(\dfrac{DN'}{CM'}=\dfrac{IN'}{IM'}\)
\(\dfrac{EN'}{BM'}=\dfrac{IN'}{IM'}\)
\(\Rightarrow\dfrac{DN'}{CM'}=\dfrac{EN'}{BM'}\) (1)
Ta có
\(\dfrac{EN'}{CM'}=\dfrac{AI}{AM'}\)
\(\dfrac{DN'}{BM'}=\dfrac{AI}{AM'}\)
\(\Rightarrow\dfrac{EN'}{CM'}=\dfrac{DN'}{BM'}\) (2)
Công 2 vế của (1) và (2)
\(\dfrac{DN'+EN'}{CM'}=\dfrac{EN'+DN'}{BM'}\Rightarrow\dfrac{DE}{CM'}=\dfrac{DE}{BM'}\)
=> CM' = BM' => M' là trung điểm của BC => M trùng M'
Từ (1) => DN'=EN' => N' là trung điểm của DE mà N là trung điểm của DE => N trùng N'
=> N; I; M thẳng hàng
a: Xét ΔABM có DN//BM
nên DN/BM=AN/AM(1)
Xét ΔACM có NE//MC
nên NE/MC=AN/AM(2)
b: Từ (1)và (2) suy ra DN/BM=NE/MC
mà BM=MC
nên DN=NE
hay N là trung điểm của DE