Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go: Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
Áp dụng định lý 2 đường trung bình của tam giác: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy
Lời giải chi tiết:
Áp dụng định lí Py-ta-go cho ΔABC vuông tại A ta có:
BC2=AB2+AC2⇒BC2=32+42=25⇒BC=5cm
Mà {AE=EB(gt)AF=FC(gt) ⇒EF là đường trung bình của ΔABC (định nghĩa)
⇒EF=12BC=12×5=2,5cm (tính chất đường trung bình của tam giác).
BD cắt AC tại O.
-△ABC=△CDA (g-c-g) \(\Rightarrow AB=DC\)
\(\Rightarrow\)△ABO=△CDO (g-c-g) \(\Rightarrow OA=OC\Rightarrow\)O là trung điểm AC.
-△ABC có: Trung tuyến BO cắt trung tuyến CE tại M.
\(\Rightarrow\)M là trọng tâm của △ABC mà F là trung điểm BC.
\(\Rightarrow\)A,M,F thẳng hàng.
a: Xét tứ giác ABCD có
AD//BC
AB//CD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD