Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)
\(\Rightarrow A\approx92^0\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)
\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)
\(r=\dfrac{S}{p}=\dfrac{80}{31}\)
a) Áp dụng công thức: \(S = \frac{1}{2}bc\sin A\), ta có:
\(S = \frac{1}{2}.14.35.\sin {60^o} = \frac{1}{2}.14.35.\frac{{\sqrt 3 }}{2} \approx 212,2\)
Áp dụng đl cosin, ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)
\(\begin{array}{l}
\Rightarrow {a^2} = {14^2} + {35^2} - 2.14.35.\cos {60^o} = 931\\
\Rightarrow a \approx 30,5
\end{array}\)
\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{30,5}}{{2\sin {{60}^o}}} \approx 17,6\)
b) Ta có: \(p = \frac{1}{2}.(4 + 5 + 3) = 6\)
Áp dụng công thức Heron, ta có:
\(S = \sqrt {p(p - a)(p - b)(p - c)} = \sqrt {6(6 - 4)(6 - 5)(6 - 3)} = 6.\)
Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{4.5.3}}{{4.6}} = 2,5.\)
a) Ta có: \(p = \frac{{a + b + c}}{2} = \frac{{15 + 20 + 25}}{2} = 30\)
Áp dụng công thức heron, ta có: \(S = \sqrt {30.(30 - 15).(30 - 20).(30 - 25)} = 150\)
b) Ta có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{15.20.25}}{{4.150}} = 12,5.\)
Ta có công thức tính diện tích tam giác khi biết các cạnh của tam giác và bán kính đường tròn ngoại tiếp là:
\(S=\frac{abc}{4R}\); với R là bán kính đường tròn ngoại tiếp và; a, b, c lần lượt là các cạnh của tam giác.
Bài giải:
Ta có tam giác AB=AC =10 cm
Kẻ đường cao BH
=> BH= CH= 12:2 =6cm
Áp dụng định lí Pitago
=> AH^2 =AC^2-HC^2=10^2-6^2=64
=> AH = 8 cm
=> Diện tích tam giác ABC: S= AH.BC:2=48 (cm^2)
Mặt khác \(S=\frac{AB.AC.BC}{4R}\Rightarrow R=\frac{AB.AC.BC}{4S}=\frac{10.10.12}{4.48}=6,25\left(cm\right)\)
Vậy bán kính đường tròn ngoại tiếp bằng 6,25 cm.
Ta sẽ tính `S_[\triangle ABC]` trước
`p = [ AB + AC + BC ] / 2 = [ 14 + 10 + 8 ] / 2 = 16`
`=> S_[\triangle ABC] = \sqrt{p ( p - AB ) ( p - AC ) ( p - BC ) } = 16\sqrt{6}`
Ta có: `S_[\triangle ABC] = [ AB . AC . BC ] / [ 4R]`
`=> R = [35\sqrt{6}] / 12`