K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

Xét tam giác ABC có M là trung điểm BC và E trung điểm AC suy ra ME là đường trung bình của tam giác abc

Suy ra ME song song AB và ME=1/2AB 

Vì P là trung điểm AB nên ME=AP và ME song song AP 

Suy ra APME là hình bình hành có T là trung điểm AM suy ra T là trung điểm EP

Vậy khi M di chuyển trên BC thì trung điểm T của AM sẽ di chuyển trên EP

8 tháng 11 2017

a, theo đề bài ta có IA=IC(gt)

                                IE=ID(gt)

=> AEDC là hình bình hành

22 tháng 10 2021

Hình tự vẽ nha.

a)

+ Xét\(\Delta\)ABC có M là trung điểm của BC

                                 E là trung điểm của AC

=> ME là đường trung bình của\(\Delta\)ABC

=> ME // AB

Cmtt: DM // AC

+ Xét tứ giác ADME có ME // AD (do ME // AB, D thuộc AB)

                                     DM // AE (do DM // AC, E thuộc AC)

=> ADME là hình bình hành (dhnb)

Vậy ADME là hình bình hành.

b)

Có ADME là hình bình hành

Để tứ giác ADME là hình chữ nhật

<=>\(\widehat{DAE}=90^0\)

<=>\(\widehat{BAC}=90^0\)

<=>\(\Delta\)ABC vuông tại A

Vậy để ADME là hình chữ nhật thì \(\Delta\)ABC vuông tại A.

22 tháng 11 2018

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này

::

Thật hay giả vậy

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O là...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0
27 tháng 10 2021

help

27 tháng 10 2021

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật

Suy ra: Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường

hay A,O,M thẳng hàng