K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

a) 

Vì BD là đường phân giác của \(\widehat{ABC}\) nên:

\(\frac{AD}{DC}=\frac{AB}{BC}\)(tính chất đường phân giác )

\(\Rightarrow\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\)hay \(\frac{AD}{AC}=\frac{AB}{AB+BC}\)

Mà \(\Delta\)ABC cân tại A nên AC=AB=15cm

\(\Rightarrow\frac{AD}{15}=\frac{15}{15+10}\Rightarrow AD=\frac{15\cdot15}{25}=9\left(cm\right)\)

Vậy DC = AC – AD = 15 – 9 = 6 (cm)

9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0
AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Lời giải:

a. Vì $ABC$ cân tại $A$ nên $AC=AB=15$

Theo tính chất tia phân giác: $\frac{AD}{DC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}$

$\Leftrightarrow \frac{AD}{AC}=\frac{3}{5}$
$\Leftrightarrow \frac{AD}{15}=\frac{3}{5}$

$\Rightarrow AD=9$ 

$DC=AC-AD=15-9=6$

b. Tính D' gì hả bạn? D'C hay D'B, D'A?

Theo tính chất phân giác ngoài:

$\frac{D'C}{D'A}=\frac{BC}{BA}=\frac{10}{15}=\frac{2}{3}$

$\Leftrightarrow \frac{D'C}{D'C+CA}=\frac{D'C}{D'C+15}=\frac{2}{3}$

$\Rightarrow 3D'C=2(D'C+15)$

$\Rightarrow D'C=30$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Hình vẽ:

12 tháng 2 2020

EZ thôi,vài đường cơ bản;gộp lại cho nó máu ! À mà tính BD chứ nhỉ ??

A B C x y x D E

Kẻ CE là phân giác góc C cắt BD tại E

Đặt EC=x thì BE=x;đặt ED=y

Áp dụng tính chất đường phân giác ta có:

\(\frac{DA}{DC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}\left(cm\right)\) khi đó \(DA=3a;DC=2a\)

Ta có:\(15=AC=DA+DC=3a+2a=5a\Rightarrow a=3\)

\(\Rightarrow DA=9;DC=6\)

Dễ thấy \(\Delta EDC~\Delta CDB\left(g.g\right)\Rightarrow\frac{ED}{CD}=\frac{DC}{DB}=\frac{EC}{CB}\)

hay \(\frac{y}{6}=\frac{6}{BD}=\frac{x}{10}=\frac{x+y}{10+6}=\frac{x+y}{16}=\frac{BD}{16}\)

\(\Rightarrow BD^2=96\Rightarrow BD=\sqrt{96}\) số khá xấu,ko bt có nhầm lẫn đâu chăng ??

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

d: góc ADI=90 độ-góc ABD

góc AID=góc BIH=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADI=góc AID

=>ΔAID cân tại A