Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác BHCD có
M là trung điểm chung của BC và HD
=>BHCD là hình bình hành
=>BH//CD và BD//CH
ta có: BH//CD
BH\(\perp\)AC
Do đó: CD\(\perp\)CA
=>ΔCDA vuông tại C
=>ΔCAD nội tiếp đường tròn đường kính AD(1)
Ta có: BD//CH
CH\(\perp\)AB
Do đó: BD\(\perp\)BA
=>ΔBAD vuông tại B
=>ΔBAD nội tiếp đường tròn đường kính AD(2)
Từ (1) và (2) suy ra B,A,D,C cùng thuộc (O), đường kính AD
Xét (O) có
ΔAID nội tiếp
AD là đường kính
Do đó: ΔAID vuông tại I
=>AI\(\perp\)ID tại I
=>AI\(\perp\)IH tại I
=>ΔAIH vuông tại I
=>I nằm trên đường tròn đường kính AH(3)
ta có: \(\widehat{AFH}=\widehat{AEH}=90^0\)
=>A,F,H,E cùng thuộc đường tròn đường kính AH(4)
Từ (3) và (4) suy ra A,F,I,H,E cùng thuộc một đường tròn
http://tailieu.metadata.vn/chi-tiet/-/tai-lieu/tuyen-tap-80-bai-toan-hinh-hoc-lop-9-pdf-17121.html
bạn tự vẽ hình nhé còn phần chứng minh để tui lo
a) để chứng minh 5 điểm này cùng nằm trên đường tròn thì bạn cần chứng minh 4 điểm A,K,F,E cùng nằm trên 1 đường tròn ( chứng minh tứ giác AKFE nội tiếp theo các cách chứng minh trong SGK toán 9 tập 2 trang 103 phần thứ 15) và bạn chứng minh 4 điểm này theo đúng hình vẽ mà bạn vẽ
sau đó chứng minh nốt K,E,F,H cùng nằm trên 1 đường tròn hoặc các điểm khác như : A,K,H,F ....... tùy hình vẽ (cách chứng minh giống như trên)
sau khi chứng minh đc 2 điều này thì => điều phải chứng minh ở phần a
b) để chứng minh 4 điểm này thẳng hàng thì có rất nhiều cách nhưng bạn nên chọn cách chứng minh 3 điểm M,H,S hoặc H,S,K , ..... cùng thẳng hàng sau đó => 4 điểm thẳng hàng
để chứng minh đc thì bạn nên xem hình vẽ và dữ kiện đã chứng minh ở phần a và suy ra những thứ cần thiết để có thể chứng minh đc cho phần b
bạn có thể chứng minh : ở 3 điểm đó có 3 góc mà khi cộng chúng lại với nhau sẽ bằng 180 độ => 3 điểm thẳng hàng
=> 4 điểm thẳng hàng
đây có thể là cách tốt nhất nhanh nhất mà mình nghĩ ra trong vòng vài phút mong bạn thông cảm thời gian của mình có hạn nên chỉ hướng dẫn đc tới đây ! .................
Bài toán thiếu dữ kiện là điểm O. (Có khả năng O là tâm đường tròn ngoại tiếp tam giác ABC). Bạn xem lại đề bài có phải thế không?
a/ Nối B với O cắt đường tròng tại K ta có
\(\widehat{BCK}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow CK\perp BC\)
\(AH\perp BC\) (AH là đường cao của tg ABC)
=> AH//CK (cùng vuông góc với BC) (1)
Ta có
\(\widehat{BAK}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AK\perp AB\)
\(CH\perp AB\) (CH là đường cao của tg ABC)
=> AK//CH (cùng vuông góc với AB) (2)
Từ (1) và (2) => AKCH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một thì tứ giác đó là hbh)
=> AH=CK (Trong 1 hbh các cặp cạnh đối bàng nhau từng đôi một)
Xét \(\Delta BCK\) có
OB=OK; BM=CM => OM là đường trung bình của tg BCK \(\Rightarrow OM=\frac{1}{2}CK\) mà \(AH=CK\Rightarrow OM=\frac{1}{2}AH\left(dpcm\right)\)
b/
Do OM là đường trung bình của tg BCK nên OM//CK mà CK//AH => OM//AH
Gọi G' là giao của AM với HO. Xét tg AHG' và tg MOG' có
\(\widehat{HAG'}=\widehat{OMG'}\) (góc so le trong)
\(\widehat{AG'H}=\widehat{MG'O}\) (góc đối đỉnh)
=> tg AHG' đồng dạng với tg MOG' \(\Rightarrow\frac{MG'}{AG'}=\frac{OM}{AH}=\frac{1}{2}\)
G' thuộc trung tuyến AM của tg ABC => G' là trọng tâm của tg ABC => G' trùng G => H,G,O nằm trên 1 đường thẳng (dpcm)
a) Trong các điểm A, B, C, D, E, F, H, ta có các nhóm 4 điểm cùng nằm trên đường thẳng như sau:
Nhóm 4 điểm A, D, F, H.Nhóm 4 điểm B, D, E, F.Nhóm 4 điểm C, D, E, F.b) Gọi M là trung điểm AC và N là trung điểm HB. Ta cần kiểm tra xem 4 điểm M, N, F, D có cùng nằm trên đường thẳng không. Để kiểm tra điều này, ta cần xem xét xem đường thẳng MN có đi qua điểm F hay không. Nếu đường thẳng MN đi qua điểm F, tức là MN là đường cao của tam giác ABC, và 4 điểm M, N, F, D sẽ cùng nằm trên đường thẳng. Ngược lại, nếu đường thẳng MN không đi qua điểm F, tức là MN không là đường cao của tam giác ABC, và 4 điểm M, N, F, D sẽ không cùng nằm trên đường thẳng.
Vì tam giác ABC là tam giác cân tại A, nên đường cao AD cũng là đường trung tuyến của tam giác ABC. Do đó, ta có AM = MD. Tương tự, ta có BN = ND. Vì vậy, ta có thể kết luận rằng 4 điểm M, N, F, D cùng nằm trên đường thẳng.