K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>AD=AE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

=>ΔAEI=ΔADI

=>góc EAI=góc DAI

=>AI là phân giác của góc BAC
c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: AB=AC

IB=IC

=>AI là trung trực của BC

=>A,I,M thẳng hàng

a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó:ΔBEC=ΔCDB

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó:ΔABD=ΔACE

Suy ra: AD=AE

c: Ta có: ΔBEC=ΔCDB

nên \(\widehat{IBC}=\widehat{ICB}\)

hayΔIBC cân tại I

Xét ΔABI và ΔACI có

AB=AC

AI chung

BI=CI

Do đó:ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

d: Xét ΔABC có AE/AB=AD/AC

nên DE//BC

20 tháng 1 2019

a, ta cm đc tam giác ABD= tam giác ACE(ch-gn)

suy ra AD=AE

20 tháng 1 2019

b, xét tam giác AEI và tam giác ADI có: góc E=D =90 độ; AI chung; AE=AD(câu a)

suy ra góc EAI= góc DAI

suy ra AI là tia phân giác góc A

16 tháng 4 2020

a, Xét △BAD vuông tại D và △CAE vuông tại E

Có: AB = AC (△ABC cân tại A)

      BAC là góc chung

=> △BAD = △CAE (ch-gn)

=> AD = AE (2 cạnh tương ứng)

b, Xét △IAE vuông tại E và △IAD vuông tại D

Có: AE = AD (cmt)

       AI là cạnh chung

=> △IAE = △IAD (ch-cgv)

=> IAE = IAD (2 góc tương ứng)

=> AI là phân giác EAD 

=> AI là phân giác BAC

c, Vì AE = AD (cmt) => △ADE cân tại A  => AED = (180o - EAD) : 2

Vì △ABC cân tại A => ABC = (180o - BAC) : 2

=> AED = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> ED // BC (dhnb)

d, Xét △BAM và △CAM

Có: AB = AC (cmt)

      BM = MC (gt)

     AM là cạnh chung

=> △BAM = △CAM (c.c.c)

=> BAM = CAM (2 góc tương ứng)

=> AM là phân giác BAC

Mà AI cũng là phân giác BAC

=> AM ≡ AI

=> 3 điểm A, I, M thẳng hàng

21 tháng 7 2020

-.- LM XOG LỠ PẤM HỦY T~T

A B C D E M N G 1 2

A)THEO ĐỊNH LÝ PYTAGO XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow10^2=6^2+AC^2\)

\(\Rightarrow100=36+AC^2\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

b) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)

\(BD\)LÀ CẠNH CHUNG

=>\(\Delta ABD\)=\(\Delta EBD\)(CH-GN)

=>\(AB=EB\)

=>\(\Delta ABE\)CÂN TẠI B

C) TRONG\(\Delta ABE\)CÓ BM LÀ PHÂN GIÁC

=> BM VỪA LÀ PHÂN GIÁC VỪA LÀ TRUNG TUYẾN

=> AM=ME

VÌ AM=ME (CMT)=> CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta AEC\)

MÀ \(CG=2GM\)

=> G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)

CÓ EN=NC (GT) =>AN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta AEC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta AEC\)

=> G NẰM TRÊN ĐƯỜNG TRUNG TUYẾN  AN

=> BA ĐIỂM A,G,N THẲNG HÀNG

a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)

góc A chung

Do đó tg AEC = tg ADB (ch - gn)

=> BD = CE (đpcm)

b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)

CE = BD (Cmt)

do đó tg CEB = tg BDC (cgv - gnk)

=> góc ECB = góc DBC

=> tam giác BIC cân tại I (đpcm)

c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)

AI chung

BI = IC (tam giác BIC cân (Cmt))

DO đó tg AIC = tg AIB (c.c.c)

=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)

d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A

Mà AI là tia pg của góc EAD nên AI vuông với DE(1)

Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)

Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)

e) ko bt

F) cm vuông như câu d nha

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC