Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
OB = OC (bán kính)
⇒ O nằm trên đường trung trực của BC (1)
Do ∆ABC cân tại A (gt)
AH là đường cao (gt)
⇒ AH cũng là đường trung trực của ∆ABC
⇒ AH là đường trung trực của BC (2)
Từ (1) và (2) suy ra O ∈ AH
⇒ O ∈ AD
Vậy AD là đường kính của (O)
b) Sửa đề: Tính độ dài các đường cao AH, BK của ∆ABC
Do AH là đường trung trực của BC (cmt)
⇒ H là trung điểm của BC
⇒ CH = BC : 2
= 12 : 2
= 6 (cm)
∆AHC vuông tại H
⇒ AC² = AH² + CH² (Pytago)
⇒ AH² = AC² - CH²
= 10² - 6²
= 64
⇒ AH = 8 (cm)
⇒ sinACH = AH/AC
= 4/5
⇒ ACH ≈ 53⁰
⇒ BCK ≈ 53⁰
∆BCK vuông tại K
⇒ sinBCK = BK/BC
⇒ BK = BC.sinBCK
= 10.sin53⁰
≈ 8 (cm)
a, Tam giác ABC cân tại A nên AH là đường trung trực của BC. Do đó AD là đường trung trực của BC. Vì O nằm trên đường trung trực của BC nên O nằm trên AD. Vậy AD là đường kính của đường tròn (O).
b, Tam giác ACD nội tiếp đường tròn đường kính AD nên ∠ACD = 90o
c, Ta có BH = HC = BC/2 = 12(cm)
Tam giác AHC vuông tại H nên AH2 = AC2 - HC2 = 202 - 122 = 256
=> AH = 16(cm)
AC2 = AD. AH
AD = AC2/AH = 25(cm)
Bán kính đường tròn(O) bằng 12,5cm.
a, Tam giác ABC cân tại A nên AH là đường trung trực của BC. Do đó AD là đường trung trực của BC. Vì O nằm trên đường trung trực của BC nên O nằm trên AD. Vậy AD là đường kính của đường tròn (O).
b, Tam giác ACD nội tiếp đường tròn đường kính AD nên ∠ACD = 90o
c, Ta có BH = HC = BC/2 = 12(cm)
Tam giác AHC vuông tại H nên AH2 = AC2 - HC2 = 202 - 122 = 256
=> AH = 16(cm)
AC2 = AD. AH
AD = AC2/AH = 25(cm)
Bán kính 25 cm
Cái này thì giống trong sách giải rồi. Với lại câu a phải dùng ngôn ngữ toán học để làm chứ trình bày văn xuôi như vậy là dài dòng lắm.
Tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung trực của BC.
Vì O là tâm của đường tròn ngoại tiếp tam giác ABC nên O nằm trên đường trung trực của BC hay O thuộc AD.
Suy ra AD là đường kính của (O).
Do tam giác ABC cân tại A nên AH là đường cao đồng thời là trung trực của BC
Mà tâm của đường tròn ngoại tiếp là giao của 3 đường trung trực hay tâm O nằm trên 3 đường trung trực
\(\Rightarrow O\in AH\)
Do AD là đường kính \(\Rightarrow\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\Delta ABD\) vuông tại B
Áp dụng hệ thức lượng:
\(AB^2=AH.AD\Rightarrow AD=\dfrac{AB^2}{AH}=7,2\left(cm\right)\)