Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AD.
Có: DB=DC=\(\dfrac{4}{2}=2\left(cm\right)\)
Xét \(\Delta_vABD\), có: \(\cos ABC=\dfrac{BD}{AB}=\dfrac{2}{8}=\dfrac{1}{4}\)\(\Rightarrow\)\(\widehat{ABC}\approx76^o\)
Có: \(\Delta_vDBC=\Delta_vECB\left(ch-gn\right)\)(\(\widehat{ABC}=\widehat{ACB}\left(gt\right);BC\): chung)
\(\Rightarrow BD=CE=BC.\cos ABC=4.\cos76^o\)\(\approx0,97\left(cm\right)\)\(\Rightarrow AD=AE=8-0,97=7,03\left(cm\right)\)\(\Rightarrow\Delta ADE\) cân tại A.
Xét \(\Delta ADE\) và \(\Delta ABC\)\(\widehat{A}\)có: \(\widehat{A}\):chung.
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(gn\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{DE}{BC}\)
hay: \(\dfrac{7,03}{8}=\dfrac{DE}{4}\Rightarrow DE=\dfrac{7,03.4}{8}=3,515\left(cm\right)\)
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a, Xét tam giác ABC và tam giác EDC ta có :
^C _ chung
\(\frac{BC}{DC}=\frac{AC}{EC}\)
^BAE = ^CED = 90^0
=> tam giác ABC ~ tam giác CED ( g.c.g )
HAB ? ^H ở đâu bạn ?
b, Vì AD là tia phân giác tam giác ABC ta có :
\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)
hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé
c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét :
\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính
d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số