Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác MDB vuông và tam giác NEC vuông có
BD=EC(gt),góc MBD=góc NCE( cùng bằng góc ACB)
=> tam giác MDB=tam giác NEC (cgv-gnk)
=> DM=EN
b) ta có góc DMI +góc MID=90 độ,góc ENI+góc EIN=90 độ
mà góc MID =góc NIE(dđ)
=> góc DMI=góc ENI
xét tam giác vuong MDI =tam giác vuong ENI (cgv-gnk)
=> MI=IN
mà I thuộc MN=> I là trung điểm của MN
c) gọi đường thẳng vuông góc với MN tại I là PI
ta có PI vừa là đường cao vừa là trung tuyến (PI vuong MN,I là tđ MN)
=> I cố định
=> PI luôn đi qua 1 điểm cố định
(Cái này là mình giải trong trường hợp AM là tia đối của AB nhé)
a) Tam giác ABC cân tại A => ABC= ACB
Mà ACB= ECN(đối đỉnh) => ABC= ECN
Xét tam giác BMD và tam giác CNE có :
BDM=CEN(=900);BD=CE(GT);ABC=ECN(chứng minh trên)
Do đó tam giác BMD=tam giác CNE(g.c.g)=>MD=NE(2 cạnh tương ứng) (đpcm)
b)Vì MDE=CEN(=900)=>MD//EN(Do có 1 cặp góc bằng nhau ở vị trí SLT)
=>DMN=ENM(cặp góc SLT)
Xét tam giác DMI và tam giác ENI có :
DMN=ENM(c/m trên);MD=NE(đã c/m ở câu a);BMD=IEN(=900)
Do đó tam giác DMI= tam giác ENI(g.c.g)=>MI=NI(2 cạnh tương ứng)
Mà I nằm giữa M và N => I là TĐ của MN
Hay BC cắt MN tại TĐ I của MN.
(câu c mk ko bít làm)
Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo lời giải tại link trên nhé.
Câu hỏi của Nguyễn Thành Nam - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.