K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đéo biết làm

1 tháng 3 2020

tự vẽ hình nha

a, Xét tg ABD và tg ACE có:

AB=AC (gt)

góc A chung

góc ADB = góc AEC (=90)

=>tg ABD = tg ACE (ch-gn)

=>BD=CE (1)

b, Xét tg OAD và tg OAE có;

AD=AE (tg ABD = tg ACE)

OA chung

góc ODA = góc OED (=90)

=>tg OAD = tg OAE (ch-cgv)

=>OD=OE (2)

Từ (1),(2) => BD - OD = CE - OE hay OB = OC

c, từ tg OAD = tg OAE (câu b) => góc OAD = góc OAE

Mà tia OA nằm giữa 2 góc này

=> OA là tia pg của góc BAC

d, Xét tg ABC cân tại A có: \(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\) (3)

Lại có AD=AE (tg ABD = tg ACE) => tg ADE cân tại A => \(\widehat{ADE}=\widehat{AED}=\frac{180-\widehat{A}}{2}\) (4)

Từ (3),(4) => \(\widehat{B}=\widehat{C}=\widehat{ADE}=\widehat{AED}\) hay góc B = góc AED

mà 2 góc này ở vị trí đồng vị

=>DE//BC

29 tháng 11 2023

`a)` 

Có `Delta ABC` cân tại `A(g t)`

`=>hat(ABC)=hat(ACB)`

`=>hat(EBC)=hat(DCB)`

Xét `Delta BEC` và `Delta CDB` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(BC-chung),(hat(EBC)=hat(DCB)(cmt)):}}`

`=>Delta BEC=Delta CDB(c.h-g.n)`

`=>CE=BD` ( 2 cạnh tương ứng )( dpcm )

`b)`

Có `Delta BEC=Delta CDB(cmt)`

`=>hat(C_1)=hat(B_1)` ( 2 góc tương ứng )

`=>Delta BOC` cân tại `O`

`=>OB=OC`(dpcm)

Xét `Delta OEB` và `Delta ODC` có :

`{:(hat(E_1)=hat(D_1)(=90^0)),(OB=OC(cmt)),(hat(O_1)=hat(O_2)(doi.di nh)):}}`

`=>Delta OEB=Delta ODC(c.h-g.n)`

`=>OE=OD`( 2 cạnh tương ứng )(dpcm)

`c)`

Có `Delta ABC` cân tại `A(g t)`

`=>AB=AC`

`=>A in ` trung trực của `Delta ABC(1)`

Có `OB=OC(cmt)`

`=>O in` trung trực của `Delta ABC(2)`

Từ `(1)` và `(2)=>OA` là trung trực `Delta ABC`

mà `Delta ABC` cân tại `A` 

Nên `OA` là phân giác `hat(BAC)` (dpcm)

23 tháng 11 2023

loading...  loading...  loading...  loading...  

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Suy ra: EC=DB

b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có 

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó:ΔOEB=ΔODC

c: Ta có: ΔOEB=ΔODC

nên OB=OC

Xét ΔAOB và ΔAOC có

AO chung

OB=OC

AB=AC
Do đó: ΔAOB=ΔAOC

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

24 tháng 12 2016

a) t/g ABC cân tại A

=> ABC = ACB ( tính chất tam giác cân)

Xét t/g DCB vuông tại D và tam giác EBC vuông tại E có:

BC là cạnh chung

DCB = EBC (cmt)

Do đó, t/g DCB = t/g EBC ( cạnh huyền - góc nhọn)

=> BD = CE (2 cạnh tương ứng) (đpcm)

b) t/g DCB = t/g EBC (câu a)

=> CD = BE (2 cạnh tương ứng)

DBC = ECB (2 góc tương ứng)

Mà ABC = ACB (câu a)

=> ABC - DBC = ACB - ECB

=> ABD = ACE

Xét t/g EBO vuông tại E và t/g DCO vuông tại D có:

BE = CD (cmt)

EBO = DCO (cmt)

Do đó, t/g EBO = t/g DCO ( cạnh góc vuông và góc nhọn kề)

=> OB = OC (2 cạnh tương ứng) (1)

OE = OD (2 cạnh tương ứng) (2)

Từ (1) và (2) => đpcm

c) Dễ thấy, t/g AOC = t/g AOB (c.c.c)

=> OAC = OAB (2 góc tương ứng)

=> AO là phân giác CAB (đpcm)

24 tháng 12 2016

A B C E D O

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:

AB = AC (gt)

Góc A chung

=> ΔABD = ΔACE ( cạnh huyền - góc nhọn )

=> BD = CE ( 2 cạnh tương ứng )

b) Vì ΔABD = ΔACE nên góc ABD = ACE ( 2 góc tương ứng ) và AD = AE ( 2 cạnh tương ứng )

Ta có: AD + DC = AC

AE + EB = AB

mà AD = AE (cm trên); AC = AB (gt)

=> DC = EB

Xét ΔEOB và ΔDOC có:

góc ABD = ACE (cm trên)

EB = DC (cm trên)

góc OEB = ODC (= 90)

=> ΔEOB = ΔDOC (g.c.g)

=> OE = OD ( 2 cạnh tương ứng ) ; OB = OC ( 2 cạnh tương ứng )

c) Do ΔEOB = ΔĐỌC nên EO = DO ( 2 cạnh tương ứng )

Xét ΔAOE vuông tại E và ΔAOD vuông tại D có:

OE = DO ( cm trên )

AE = AD (câu b)

=> ΔAOE = ΔAOD ( cạnh góc vuông )

=> góc OAE = OAD ( 2 góc tương ứng )

Do đó AO là tia phân giác của góc EAD hay AO là tia pg của góc BAC.

Chúc học tốt Cathy Trang