Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a/ Tứ giác ABCD có:
- AM=MD (gt)
- MB=MC (gt)
=> Tứ giác ABCD là hình bình hành
Do △ABC là tam giác cân suy ra AM vừa là trung tuyến vừa là đường cao hay AM⊥BC
=> ABCD là hình thoi (đpcm)
b/ Hình thoi ABCD (cmt) có AC//BD => CF//BD => AF//BD (1)
Mặt khác ta có: AD⊥BC ; BF⊥BC => AD//BF (2)
AF và BD cùng cắt AD và BF (3)
Từ (1), (2), (3):
Vậy tứ giác ADBF là hình bình hành (đpcm)
a) Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(A và D đối xứng với nhau qua M)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó; DE là đường trung bình
=>DE//AB
Xét tứ giác ABED có DE//AB
nên ABED là hình thang
mà \(\widehat{DAB}=90^0\)
nên ABED là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
c: Đề sai rồi bạn
a, xét tam giác ABC có đường t/b ED:
=>ED//AB
xét tứ giác ABED có :
ED//AB
BAC = 90\(^o\)
vậy ABED là hình thang vuông.
b, vì F đối xứng với E qua D nên:
ED=DF(1)
vì D là trung điểm AC nên:
AD=DC(2)
từ (1) và (2) suy ra :
tứ giác AECF là hình thoi.
c,vì ED //AB
mà AB vuông góc Ac
=>ED vuông góc AC
<=>EDA là góc vuông
xét tứ giác ABEH có :
\(EHA=BAC=EDA=90^o\)
vậy ABEH là hình chữ nhật.
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó: DE là đường trung bình
=>DE//AB và DE=AB/2
Xét tứ giác ADEB có DE//AB
nên ADEB là hình thang
mà \(\widehat{DAB}=90^0\)
nên ADEB là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
a: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
mà AB=AC
nên ABKC là hình thoi
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a: Xét ΔCIA vuông tại A và ΔDIB vuông tại B có
IA=IB
\(\widehat{CIA}=\widehat{DIB}\)
Do đó: ΔCIA=ΔDIB
Suy ra: AC=BD
a: Xét tứ giác ABCE có
D là trung điểm của đường chéo BC
D là trung điểm của đường chéo AE
Do đó: ABCE là hình bình hành
mà AB=AC
nên ABCE là hình thoi
b: Xét tứ giác AECF có
AE//CF
AF//CE
Do đó: AECF là hình bình hành
ta có AD=ED
BD=CD
=> ABCE là hình thoi