Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc BAM chung
=>ΔAMB=ΔAMC
=>góc ABM=góc ACN
b: góc ABM+góc HBC=góc ABC
góc ACN+góc HCB=góc ACB
mà góc ABM=góc ACN và góc ABC=góc ACB
nên góc HBC=góc HCB
=>HB=HC
c: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
NM//BC
=>góc HMN=góc HBC; góc HNM=góc HCB
mà góc HBC=góc HCB
nên góc HMN=góc HNM
góc EMN=góc MNC
góc MNC=góc HMB
=>góc EMN=góc HMB
=>MN là phân giác của góc EMB
a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có AB=AC
góc BAM chung
=>ΔAMB=ΔAMC
=>góc ABM=góc ACN
b: góc ABM+góc HBC=góc ABC
góc ACN+góc HCB=góc ACB
mà góc ABM=góc ACN và góc ABC=góc ACB
nên góc HBC=góc HCB
=>HB=HC
c: Xét ΔABC có AN/AB=AM/AC nên NM//BC NM//BC
=>góc HMN=góc HBC; góc HNM=góc HCB mà góc HBC=góc HCB nên:
góc HMN=góc HNM; góc EMN=góc MNC; góc MNC=góc HMB
=>góc EMN=góc HMB
=>MN là phân giác của góc EMB
\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)
\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)
mà ABC= ACB(t/g ABC cân A)
\(\rightarrow ABM=ACN\)
Xét t/g ABM và t/g ACN
Có ^BAC chung
AC= AB(t/g ABC cân A)
^ABM= ^ACN(cmt)
\(\rightarrow\)t/g ABM = t/g ACN(gcg)
a/ Xét T/g ABH và T/g ACH ta có :
+ AB = AC ( T/g ABC cân tại A )
+ BH = CH ( H là trung điểm BC )
+ Góc ABH = ACH ( T/g ABC cân tại A )
=> T/g ABH = T/g ACH (C.g.c)
b/Xét T/g ABM và T/g ACM ta có
+ Ab = Ac ( T/g ABC cân tại A )
+ AM chung
+ BAM = CAM ( T/g ABH = T/g ACH )
=> T/g ABM = T/g ACM (C.g.c)
- Ta có :
BM = CM ( T/g ABM = T/g ACM)
=> T/g MBC cân tại M
a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AB=AC\)(gt)
\(\widehat{ABH}=\widehat{ACH}\)(gt)
\(BH=CH\)(gt)
suy ra: \(\Delta ABH=\Delta ACH\)(c.g.c)