K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

a: Xét ΔABC có

H,O lần lượt là trung điểm của CB,CA

=>HO là đường trung bình của ΔABC

=>HO//AB và \(HO=\dfrac{AB}{2}\)

b: Ta có: HO//AB

O\(\in\)HD

Do đó: HD//AB

Ta có: HO=AB/2

HO=HD/2

Do đó: AB=HD

Xét tứ giác ABHD có

HD//AB

HD=AB

Do đó: ABHD là hình bình hành

=>AH cắt BD tại trung điểm của mỗi đường

mà I là trung điểm của AH

nên I là trung điểm của BD

=>B,I,D thẳng hàng

 

13 tháng 6 2020

tự kẻ hình nha

a) vì tam giác BEC vuông tại E=> EBC=90 độ-ECB

vì ECB+BCD= 90 độ( AC vuông góc với CD)

=> BCD=90 độ-ECB

xét tam giác HMB và tam giác CMD có

MB=MC(gt)

HMB=DMC(đối đỉnh)

HBM=MCD(= 90 độ-ECB)

=> tam giác HMB= tam giác DMC(gcg)

=> BH=CD (hai cạnh tương ứng)

b) từ tam giác HMB= tam giác DMC=> HM=DM( hai cạnh tương ứng)

=> M là trung điểm của HD

c) hình như nhầm một chút rồi, phải là AM,HO,DI giao nhau 

vì M là trung điểm của HD=> AM là trung tuyến

vì O là trung điểm của AD=> HO là trung tuyến

vì I là trung điểm của AH=> DI là trung tuyến 

=> AM, HO,DI giao nhau tại một điểm ( trong tam giác, 3 đường trung tuyến giao nhau tại một điểm)

14 tháng 6 2020

E ở đâu vậy ạ?

1: Xét ΔBDH có \(\widehat{DBH}=\widehat{DHB}\left(=\widehat{ACB}\right)\)

nên ΔBDH cân tại D

Xét ΔABC có 

H là trung điểm của BC

HD//AC
Do đó: D là trung điểm của AB

2: Xét ΔABC có

CD là đường trung tuyến

AH là đường trung tuyến

CD cắt AH tại G

Do đó: G là trọng tâm của ΔABC

=>BG là đường trung tuyến ứng với cạnh AC

mà E là trung điểm của AC

nên B,G,E thẳng hàng

 

4 tháng 3 2022

help vs cần gấp lắm ko cần hình đâu

16 tháng 2 2022

nứng quá aaaaaaaaaaaaaaa kimochiiiii

16 tháng 2 2022

bậy bạ

3 tháng 7 2016

Vẽ hình đj bn

3 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác ABO và tam giác CDO có:

AO = CO (BO là trung truyến của tam giác ABC)

AOB = COD (2 góc đối đỉnh)

BO = DO (gt)

=> Tam giác ABO = Tam giác CDO (c.g.c)

=> BAO = DCO (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AB // CD.

b.

BO là trung tuyến của tam giác ABC

=> O là trung điểm của AC

=> AO = CO = \(\frac{1}{2}AC\) (1)

  • BO = DO (gt) => CO là trung tuyến của tam giác BCD
  • BM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD

=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD

=> I là trọng tâm của tam giác BCD.

=> IO = \(\frac{1}{3}OC\) (2)

Thay (1) vào (2), ta có:

IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)

\(\Rightarrow AC=6\times IO\)

c.

AB // CD

=> EBM = DCM (2 góc so le trong)

Xét tam giác EBM và tam giác DCM có:

EBM = DCM (chứng minh trên)

BM = CM (M là trung điểm của BC)

BME = CMD (2 góc đối đỉnh)

=> Tam giác EBM = Tam giác DCM (g.c.g)

=> BE = CD (2 cạnh tương ứng)

mà CD = AB (tam giác ABO = tam giác CDO)

=> BE = AB.

Chúc bạn học tốtok

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BCa)Chứng minh: ∆AHB = ∆AHC ;b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cânc)Chứng minh MN // BC ;d)Chứng minh AH2 + BM2 = AN2 + BH25)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.a)Chứng minh : ADBDABˆˆ=;b)Chứng minh : AD là phân giác của góc HACc) Chứng minh : AK = AH.6)Cho tam giác cân ABC có AB = AC = 5...
Đọc tiếp

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC

a)Chứng minh: ∆AHB = ∆AHC ;

b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân

c)Chứng minh MN // BC ;

d)Chứng minh AH2 + BM2 = AN2 + BH2

5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC

.a)Chứng minh : ADBDABˆˆ=;

b)Chứng minh : AD là phân giác của góc HAC

c) Chứng minh : AK = AH.

6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)

a) Chứng minh : HB = HC và ·CAH = ·BAH

b)Tính độ dài AH ?

c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC

7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.

Chứng minh rằng :a) ∆ AFE cân

b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE

c) Chứng minh rằng : AE = (AB+AC):2

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .

a)Chứng minh rẳng : ΔABH = ΔEBH ;

b)Chứng minh BH là trung trực của AE

c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC

10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.

a).CMR: ΔMHB = ΔMKC

b).CMR: AC = HK

c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC

11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.

a) CMR: ∆ ABE = ∆ ACD.

b) CMR: HD = HE.

c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.

d) CMR: AO là tia phân giác của góc BAC ?

e) A ,O , H thẳng hàng

12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)

a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm

c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).

d) Tam giác ADE là tam giác gì? Vì sao?

 


 

5
14 tháng 2 2016

nhiều bài quá bạn ơi duyệt đi

phê răng mi viết đc rứa

17 tháng 4 2022

Tham khảo :

https://hoidap247.com/cau-hoi/4364668

17 tháng 4 2022

hình bạn tự vẽ nha

a) trong △ABC có :

 AH⊥BC=> AH là đường cao của △ABC

mà △ABC cân tại A

=>AH vừa là đường cao , vừa là đường trung tuyến của △ABC

b)có △ABC cân tại A=> góc ABC=góc ACB

                                  hay góc DBH=góc ACB

mà: HD//AC

=>góc BHD=góc ACB(ĐV)

=> góc DBH=gócBHD

=>△BHD cân tại D

=> BD=DH(1)

có AH⊥BC => △ABH vuông tại H

                  => góc BAH+góc ABH=900

mà góc BHD+ góc HAD =900; góc ABH= góc DHB

=>góc DAH= góc DHA

=>△AHD cân tại D

=> DA=DH(2)

từ (1),(2)=> AD=DB(=DH)

             => D là trung điểm của AB

c)trong △ABC có:

  AH là đường trung tuyến thứ nhất của △ABC

  D là trung điểm của AB=> CD là đường trung tuyến thứ hai của △ABC

  E là trung điểm của AC=>BE là đường trung tuyến thứ ba của △ABC

lại có AH và CD cắt nhau tại G

=> G là trọng tâm của △ABC

=> BE đi qua G

=> 3 điểm B,G,E thẳng hàng

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔAHC

b: Xét tứ giác AKCG có

N là trung điểm chung của AC và KG

=>AKCG là hình bình hành

=>AG//CK

c: GB=2GN

GK=2GN

=>GB=GK

=>G là trung điểm của BK

13 tháng 3 2020

a

XÉT ΔAHB VÀ ΔDBH

BH- CẠNH CHUNG

^AHB=^DBH

AH=BD

=>ΔAHB = ΔDBH (CGC)

B) VÌ ΔAHB = ΔDBH

=> ^ABH=^DHB

MÀ  2 GÓC NÀY Ở T SO LE TRONG CỦA AB VÀ HD

=>AB//HD

C)

VÌ ΔAHB = ΔDBH

=>AB=DH (2CTU)

=>AC=BD(2CTU)

XÉT TAM GIÁC BAD VÀ TAM GIÁC HAD            P/S : CÓ AI ĐỂ Ý 2 TỪ TA BAD VÀ HADKO ;V

AB=DH

AC=BD

AD-CẠNH CHUNG

=>TAM GIÁC BAD = TAM GIÁC HAD

=>^BAD=^HDA

=> ^BAO=^ODH

XÉT TAM GIÁC BAO VÀ TAM GIÁC HDO

^BAD=^HDA

AB=HD

^BAO=^ODH

=> TAM GIÁC BAO = TAM GIÁC HDO

=> BO=HO (2CTU)

=> O là trung điểm của BH