Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
a)
xét 2 tam giác vuông ABH và ACH có:
AB=AC
B=C
suy ra tam giác ABH=ACH(CH-GN)
suy ra BH=CH=1/2BC=6:2=3(cm)
AH^2=AB^2-BH^2=5^2-3^2=25-9=16
AH= 4(cm)
b)
theo câu a, ta có tam giác ABH=ACH(CH-GN)
suy ra BH=CH suy ra AH là 1 đường trung tuyến của tam giác ABC
G là trọng tâm tam giác nên G sẽ là giao của 3 đường trung tuyến
suy ra A,G,H thẳng hàng
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Suy ra: DA=DE
b: Xét ΔDEC vuông tại E và ΔDAF vuông tại A có
DE=DA
\(\widehat{EDC}=\widehat{ADF}\)
Do đó: ΔDEC=ΔDAF
c: \(\widehat{BED}=\widehat{BAD}=90^0\)
\(\widehat{EBD}=\dfrac{90^0-40^0}{2}=25^0\)
\(\widehat{EDB}=90^0-25^0=55^0\)
a) Vì tam giác ABC cân tại A nên AB=AC
Vì AH là đường cao của tam giác ABC nên góc AHB= góc AHC=90 độ
Tam giác AHC= tam giác AHB(ch-cgv) nên CH=BH
Mà BH+CH=BC nên 2BH=6(cm) nên BH=3cm
Tam giác AHB vuông tại H nên áp dụng định lí pytago ta cóAB^2=AH^2+BH^2
Mà AB=5cm, BH=3cm nên AH^2=16 mà AH>0 nên AH=4cm
b) Vì BH=CH(cm câu a) nên H là trung điểm của BC nên AH là đường trung tuyến của tam giác ABC
Mà G là trọng tâm của tam giác ABC nên G thuộc đoạn thẳng AH
Nên A, G, H thẳng hàng(đpcm)
Đây là ý kiến của mình, mong bạn ủng hộ
a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:
\(\widehat{AHM}=\widehat{AKM}=90^o\)
AM cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))
\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)
`=> AH = AK` (2 cạnh tương ứng) (1)
Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)
\(\widehat{KAM}+\widehat{BAM}=90^o\)
\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)
Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))
\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)
\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\) (2)
Từ (1), (2) ta có đpcm
b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:
\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)
HM = KM (vì \(\Delta AHM=\Delta AKM\))
\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)
\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)
`=> HI = CK` (2 cạnh tương ứng)
Mà AH = AK (cmt)
`=> AH + HI = AK + CK`
`=> AI = AC`
\(\Rightarrow\Delta ACI\) cân tại A
AM là đường phân giác của \(\Delta ACI\) cân tại A
`=> AM` cũng là đường cao
\(\Rightarrow AM\perp CI\) (3)
Vì AH = AK nên \(\Delta AHK\) cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)
Mà 2 góc này ở vị trí đồng vị
`=>` HK // CI (4)
Từ (3), (4) ta có đpcm
Hình vẽ:
Giải:
a/ Xét \(\Delta ACI\) và \(\Delta BCI\) có:
AI: chung
\(\widehat{ACI}=\widehat{BCI}\left(gt\right)\)
AC = BC (gt)
=> \(\Delta ACI=\Delta BCI\left(c-g-c\right)\left(đpcm\right)\)
=> AI = BI (c t/ứng)(đpcm)
b/ \(\Delta ACI=\Delta BCI\left(ýa\right)\)
\(\Rightarrow\widehat{AIC}=\widehat{BIC}\) (g t/ứng)
mà \(\widehat{AIC}+\widehat{BIC}=180^o\) (kề bù)
=> \(\widehat{AIC}=\widehat{BIC}=90^o\)
=> CI _l_ AB
Vì AI = BI mà AB = 6
=> AI = BI = 3
Áp dụng định lý Py-ta-go vào \(\Delta ACI\) vuông tại I có: \(CI^2+AI^2=AB^2\)
hay \(CI^2+3^2=5^2\)
\(\Rightarrow CI^2=5^2-3^2=16\)
\(\Rightarrow CI=4\left(cm\right)\)
c/ Xét 2 \(\Delta vuông\): \(\Delta ACK\) và \(\Delta BCK\) có:
AK: chung
AC = BC (gt)
=> \(\Delta ACK=\Delta BCK\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ACK}=\widehat{BCK}\) (g t/ứng)
=> CK là tia p/g của góc ACB (1)
Lại có: CI là tia p/g của góc ACB (gt)
=> CK trùng CI
=> 3 điểm C, I, K thẳng hàng (đpcm)
a. Vì tam giác ABC cân tại A nên đường cao cũng là đường trung tuyến
Do đó H là trung điểm của BC hay BH=HC=1/2BC=3cm
Áp dụng định lý Pytago trong tam giác ABH vuông tại H ta có AH2 + BH2 = AB2
suy ra AH2 + 32 = 52
=> AH = 4(cm)
b. Vì tam giác ABC cân tại A, AH là đường cao nên AH cũng là đường trung tuyến của tam giác ABC
Do đó A, G, H thẳng hàng
c. Vì tam giác ABC cân tại A, AH là đường cao nên AH cũng là phân giác góc A
suy ra góc BAG = góc CAG
Tam giác ABG và tam giác ACG có:
AB = AC
góc BAG = góc CAG
AG chung
Do đó tam giác ABG = tam giác ACG