Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
b) Vì đường trung trực của AH cắt AC tại N(gt)
nên N nằm trên đường trung trực của AH
hay NA=NH(Tính chất đường trung trực của một đoạn thẳng)
a) Xét tam giác ABC có AH là đường cao (gt)=> AH đồng thời là đường trung tuyến
=> HC=HB
câu b mk chả hiểu đề bài
a) vì DI là đường trung trực của BC
suy ra {DI vuông góc vs BC tại I
{góc DIB = góc DIC=90độ IB=IC( gt)
xét tam giác DIB và tam giác DIC có
IB=IC(gt)
góc DIB=góc DIC=90độ
ADI là cạnh chung
suy ra tam giác DIB = tam giác DIC (c.g.c)
suy ra DC=DB (2 cạnh tương ứng )
xét tam giác ABC có : DC=DB(chứng minh trên)
suy ra tam giác DBC cân tại D
Tham khảo
a) Xét 2 tam giác vuông ΔAHB và ΔAHC có:
AH chung
AB = AC (GT)
⇒ Δ AHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ˆBAH=ˆCAHBAH^=CAH^ ( 2 góc tương ứng) (1)
Ta lại có: HD // AC ( GT )
⇒ ˆDHA=ˆCAHDHA^=CAH^ (2 góc so le trong) (2)
Từ (1) và (2) => ˆDHA=ˆBAHDHA^=BAH^
Hay: ˆDHA=ˆDAHDHA^=DAH^
=> ΔADH cân tại D
=> AD = DH
c) Ta có: ΔABH = ΔACH (câu a)
⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến ΔABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB = ∠ACB ( 2 góc đồng vị )
Mà ΔABC cân tại A (GT)
⇒ ∠ABC= ∠ACB
⇒ ∠DHB = ∠DBH
=> ΔDHB cân tại D
⇒ DB =DH
Lại có AD = DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến ΔABC (4)
Từ (3), (4) ta có: AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
Mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
a, Xét tam giác HBA vuông tại H có:
AB2=AH2+BH2(định lí py ta go)
hay 100=AH2+36
=> AH2=64
=> AH=8(cm)
b, Xét tam giác ABH và tam giác ACH có:
góc AHB=góc AHC =90 độ
AB=AC (tam giác ABC cân tại A)
AH chung
=> tam giác ABH = tam giác ACH
c,
Xét tam giác DBH và tam giác ECH có:
BD=CE (gt)
góc DBH= góc ECH (tam giác ABC Cân tại A)
BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)
=> tam giác DBH=tam giác ECH
=> DH=EH( 2 cạnh tương ứng)
=> tam giác HDE cân tại H
d) Vì AB = AC; BD = CE
mà AB - BD = AD
AC - CE = AE
=> AD = AE
Vì ΔHDE cân
=> H ∈ đường trung trực cạnh DE (1)
Xét ΔADHvàΔAEHcó
AD = AE (cmt)
AH (chung)
DH = HE (cmt)
Do đó: ΔADH=ΔAEH(c−c−c)
=> AD = AE ( hai cạnh tương ứng)
=> ΔADE cân tại A
=> A ∈ đường trung trực cạnh DE (2)
(1); (2) => A,H ∈ đường trung trực cạnh DE
=>AH là đường trung trực cạnh DE
CHÚC BẠN HỌC TỐT
b: BE>BC+CE
=BC+1/2CH
=BC+1/2*1/2(HB+HC)
=BC+1/4(HB+HC)>BC+1/4BC
=>BE>5/4BC>3/BC
a, - Xét tam giác ABC cân tại A có : AH là đường cao .
=> AH là đường trung trực .
=> H là trung điểm của BC .
=> BH = CH .
b, Đề là lạ :vvv
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
b) Sửa đề: Chứng minh NA=NC
Ta có: đường trung trực của AH cắt AH tại M và cắt AC tại N(gt)
nên NM là đường trung trực của AH
\(\Leftrightarrow NM\perp AH\) tại trung điểm của AH
mà NM cắt AH tại M(gt)
nên M là trung điểm của AH
Ta có: NM\(\perp\)AH(cmt)
BC\(\perp\)AH(gt)
Do đó: NM//BC(Định lí 1 từ vuông góc tới song song)
hay NM//HC
Xét ΔAHC có
M là trung điểm của AH(cmt)
MN//HC(cmt)
Do đó: N là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
hay NA=NC(đpcm)