K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  loading...  

24 tháng 9 2015

A, TA CÓ: AH vuông góc với CB, tam giác ABC cân tại A=>AH là đường trung tuyến của ABC=>CH=CB

Xét tam giác CDB có MH // DB, CH=CB =>M trung điểm của CD (T/C đường tb của tam giác)

b, xét tam giác CDB có CM=MD, DN=NB=>MN là đường tb của tam giác CDB => MN // CB

MÀ AH vuông góc với CB,=>MN vuông góc với AH mà E thuộc MN=>ME vuông góc với AH

CÒN PHẦN C THÌ MK KO BIẾT. SORRY NHA 

 

a: ΔABC vuông cân tại A có AH là đường cao

nên H là trung điểm của BC

Xét ΔCAB có CH/CB=CM/CA=1/2

nên HM//AB và HM/AB=CH/CB=1/2

=>HM=1/2AB

c: Xét ΔCDB có

CA,BN là đường cao

CA cắt BN tại M

=>M là trực tâm

=>DM vuông góc BC

=>góc MDB=90-45=45 độ

Xét ΔADM vuông tại A có góc ADM=45 độ

nên ΔADM vuông cân tại A

=>AD=AM

a: Xét ΔAHB vuông tại H và ΔAMH vuông tại M có

góc BAH=góc HAM

=>ΔAHB đồng dạng với ΔAMH

b: Xét ΔAHC vuông tại H có HMlà đường cao

nên CH^2=CM*CA
c: HC=BC/2=6cm

=>AH=8cm

HM=6*8/10=4,8cm

MC=6^2/10=3,6cm

\(S_{HMC}=\dfrac{1}{2}\cdot4.8\cdot3.6=1.8\cdot4.8=5.76\left(cm^2\right)\)

31 tháng 10 2023

A B C H M N K I O D

a/

Ta có

HI=CI (gt); AI=KI (gt) => ACKH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AC//HK (Trong hbh 2 cạnh đối // với nhau)

b/

Ta có

\(HM\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HM//AC

Mà HK//AC (cmt)

\(\Rightarrow HM\equiv HK\) (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho) => M; K; H thẳng hàng

=> AC//MK => MNCK là hình thang

Ta có

AC//MK => AN//MH

\(AB\perp AC\left(gt\right);HN\perp AC\left(gt\right)\) => AB//HN => AM//HN

=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

\(\widehat{A}=90^o\)

=> AMHN là hình chữ nhật => AH=MN (trong HCN hai đường chéo bằng nhau)

Mà ACKH là hbh (cmt) => AH=CK (cạnh đối hbh)

=> MN=CK

=> hình thang MNCK có MN = CK => MNCK là hình thang cân

c/

Xét tg AHC có

OA=OH (Trong hình chữ nhật 2 đường chéo cắt nhau tại trung điểm mỗi đường)

HI=CI (gt)

=> D là trọng tâm của tg AHC \(\Rightarrow AD=\dfrac{2}{3}AI\)

Xét hình bình hành ACKH có

\(AI=KI\) (Trong hình bh 2 đường chéo cắt nhau tại trung điểm mỗi đường) \(\Rightarrow AI=\dfrac{1}{2}AK\)

\(\Rightarrow AD=\dfrac{2}{3}.\dfrac{1}{2}AK=\dfrac{1}{3}AK\Rightarrow AK=3AD\)