Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)xét\(\Delta ABH\)và\(\Delta ACH\)có:
\(\widehat{AHC}=\widehat{AHB}=90^o\)(vì\(AH\)là đường cao của \(\Delta ABC\))
\(AB=AC\)(vì \(\Delta ABC\)cân)
\(\widehat{ABC}=\widehat{ACB}\)(vì\(\Delta ABC\)cân)
\(\Rightarrow\Delta ABH=\Delta ACH\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(2 cạnh tương ứng)
Xét \(\Delta AHP\)và\(\Delta AHQ\)có:
\(AH\)chung
\(\widehat{APH}=\widehat{AQH}=90^o\)(vì\(HP\perp AB\equiv P\)và \(HQ\perp AC\equiv Q\))
\(\widehat{BAH}=\widehat{CAH}\)(chứng minh trên)
\(\Rightarrow\Delta AHP=\Delta AHQ\)(cạnh huyền-góc nhọn)
\(b)\)Gọi giao điểm của PQ và AH là I
Xét \(\Delta AIP\)và \(\Delta AIQ\)có:
\(\widehat{BAH}=\widehat{CAH}\)(vì\(\Delta AHB=\Delta AHC\))
\(AI\)chung
\(AP=AQ\)(vì \(\Delta AHP=\Delta AHQ\))
\(\Rightarrow\Delta AIP=\Delta AIQ\)(c.g.c)
\(\Rightarrow\widehat{AIP}=\widehat{AIQ}\)(2 cạnh tương ứng)
Mà\(\widehat{AIP}+\widehat{AIQ}=180^o\)(vì kề bù)
\(\Rightarrow\widehat{AIP}=\widehat{AIQ}=\frac{180^o}{2}\)\(=90^o\)
\(\Rightarrow AH\perp PQ\)
mà\(AH\perp BC\)(vì \(AH\)là đường cao của \(\Delta ABC\))
\(\Rightarrow PQ//BC\)(vì cùng \(\perp AH\))
chúc ngươi học tốt !
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
Bạn ghi lại đề câu c nha
a: ΔBAC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔAPH vuông tại P và ΔAQH vuông tại Q có
AH chung
góc PAH=góc QAH
=>ΔAPH=ΔAQH
b: Xét ΔABC có AP/AB=AQ/AC
nên PQ//BC
a. Tam giác ABC cân tại A suy ra AH là đường cao cũng là đường phân giác góc A
\(\Rightarrow\widehat{HAP}=\widehat{HAQ}\)
xét 2 tam giác vuông AHP và AHQ có:
AH chung
góc HAP= góc HAQ ( cm trên)
suy ra 2 tam giác bằng nhau theo TH cạnh huyền- góc nhọn
suy ra AP=AQ nên tam giác APQ cân tại A.
b. Do 2 tam giác APQ và ABC cùng cân tại A nên: \(\widehat{APQ}=\widehat{ABC}\left(=\frac{180^o-A}{2}\right)\)
mà 2 góc này ở vị trí đông vị nên PQ//BC.
c. gọi F là điểm đối xứng của E qua H. => HE=HF
suy ra 2 tam giác BEH và CFH bằng nhau (c.g.c) => BE=CF.
Từ a => HP=HQ
suy ra 2 tam giác HBP và HCQ bằng nhau theo TH (cạnh huyền- cạnh góc vuông).
=> BP=CQ.
xét tam giác CFQ có CF là cạnh huyền nên CF>CQ => BE> BP => đccm
Sửa đề: Vuông góc với AC,AP tại N,P
a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có
BI chung
\(\widehat{PBI}=\widehat{MBI}\)
Do đó: ΔBPI=ΔBMI
=>BP=BM
b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có
CI chung
\(\widehat{MCI}=\widehat{NCI}\)
Do đó: ΔIMC=ΔINC
=>IM=IN
c: ΔMCI=ΔNCI
=>MC=CN
BP+CN
=BM+MC
=BC
d: ΔBPI=ΔBMI
=>IP=IM
mà IM=IN
nên IP=IN
Xét ΔAPI vuông tại P và ΔANI vuông tại N có
AI chung
IP=IN
Do đó: ΔAPI=ΔANI
=>\(\widehat{PAI}=\widehat{NAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
a) Xét tam giác AHB vuông tai H và tam giác AHC vuông tại H có
AH chung
AB=AC(2 cạnh bên của tam giác ABC cân)
Do đó tam giác AHB=tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> góc BAH = góc CAH ( 2 góc t/ứ)
Xét tam giác AHP vuông tại P và tam giác AHQ vuông tại Q có
AH chung
góc BAH=góc CAH(cmt)
Do đó tam giác vuông AHP=tam giác vuông AHQ(cạnh huyền - góc nhọn)
b)Vì tam giác ABC cân tại A => góc ABC = (180* - góc BAC) :2 (1)
Xét tam giác APQ có AP=AQ( 2cạnh t/ứ của tam giác AHP=tam giác AHQ)
=> tam giác APQ cân tại A ( đ/n tam giác cân)
=> góc APQ = (180* - góc BAC):2 (2)
Từ 1 và 2 => góc APQ = Góc ABC
mà 2 góc này ở vị trí là 2 góc đồng vị
=> PQ // BC