K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: M đối xứng A qua BC

nên BC là trung trực của AM

=>BA=BM; CA=CM

mà BA=CA

nên BA=BM=CA=CM

=>ABMC là hình thoi

b: Xét tứ giác AHCI có

K là trung điểm chung của AC và HI

góc AHC=90 độ

Do đó: AHCI là hình chữ nhật

c: Xét ΔBAC có CH/CB=CK/CA

nen HK//AB và HK=AB/2

=>HK//AD và HK=AD

=>ADHK là hình bình hành

=>AH cắt DK tại trung điểm của mỗi đường(1)

Xét tứ giác AIHB có

AI//HB

AI=HB

Do đó: AIHB là hình bình hành

=>AH cắt IB tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AH,IB,DK đồng quy

24 tháng 10 2021

Bài 2: 

a: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

b: Xét tứ giác BHAD có 

I là trung điểm của AB

I là trung điểm của HD

Do đó: BHAD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên BHAD là hình chữ nhật

18 tháng 12 2021

a: Xét ΔABC  có 

D là tđiểm của AB

E là tđiểm của AC

Do đó: DE là đường trung bình

=>DE//FC và DE=FC

hay DECF là hình bình hành

b: Xét tứ giác AHCK có 

E là trung điểm của AC

E là trung điểm của HK

Do đó: AHCK là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCK là hình chữ nhật

12 tháng 12 2021

ABCKHM----

a) Xét tứ giác AHCK ta có:

 Vì O trung điểm AC

K đối xứng vs H qua O => O trung điểm HK

Mà AC và HK cắt nhau tại trung điểm O

=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)

Lại có ^AHC=90( AH là đường cao)

=> AHCK là hcn (hbh có 1 góc vuông)

b) Xét tứ giác ABMC có:

M đối xứng với A qua H => AM là đường trung trực 

=> AB=AC (1)

Mặt khác:M đối xứng vs A qua H=> H trung điểm AM

AH là đường cao của tam giác ABC cân tại A

=> AH là đường trung tuyến của tam giác ABC

=>H là trug điểm BC (HB=HC)

mà AM và BC cắt nhau tại trug điểm H

Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)

Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)

c) Xét tứ giác ABHK có:

Vì HB=HC (cmt)

mà AK=HC ( AKHC là hcn)

=> AK=BH 

Lại có AK//BC (AKHC là hcn)

=>AK//BH 

Nên AKBH là hbh (  2 cạnh đối // và = nhau)

d) VÌ HB=HC=BC/2 (cm câu a)

=> HC=6/2=3 cm

Áp dụng công thức tính S và hcn AKHC ta có:

SAKHC=AH.HC

=> SAKHC=4.3=12 (cm2)

Vậy  SAKHC=12 cm2

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K