Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do AD là tia phân giác của ∠BAC (gt)
⇒ ∠BAD = ∠CAD
Do ∆ABC cân tại A
⇒ AB = AC
Xét ∆ABD và ∆ACD có:
AB = AC (cmt)
∠BAD = ∠CAD (cmt)
AD là cạnh chung
⇒ ∆ABD = ∆ACD (c-g-c)
⇒ BD = CD
⇒ D là trung điểm của BC (1)
Do ∆ABD = ∆ACD (cmt)
⇒ ∠ADB = ∠ADC (hai góc tương ứng)
Mà ∠ADB + ∠ADC = 180⁰ (kề bù)
⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰
⇒ AD ⊥ BC (2)
Từ (1) và (2) ⇒ AD là đường trung trực của BC
b) Sửa đề: Chứng minh ∆ADM = ∆ADN
Do ∠BAD = ∠CAD (cmt)
⇒ ∠MAD = ∠NAD
Xét ∆ADM và ∆ADN có:
AD là cạnh chung
∠MAD = ∠NAD (cmt)
AM = AN (gt)
⇒ ∆ADM = ∆ADN (c-g-c)
⇒ ∠AMD = ∠AND = 90⁰ (hai góc tương ứng)
⇒ DN ⊥ AN
⇒ DN ⊥ AC
d) Do K là trung điểm của CN (gt)
⇒ CK = KN
Xét ∆DKC và ∆EKN có:
CK = KN (cmt)
∠DKC = ∠EKN (đối đỉnh)
KD = KE (gt)
⇒ ∆DKC = ∆EKN (c-g-c)
⇒ ∠KDC = ∠KEN (hai góc tương ứng)
Mà ∠KDC và ∠KEN là hai góc so le trong
⇒ EN // CD
⇒ EN // BC (3)
∆AMN có:
AM = AN (gt)
⇒ ∆AMN cân tại A
⇒ ∠AMN = (180⁰ - ∠MAN) : 2
= (180⁰ - ∠BAC) : 2 (4)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (5)
Từ (4) và (5) ⇒ ∠AMN = ∠ABC
Mà ∠AMN và ∠ABC là hai góc đồng vị
⇒ MN // BC (6)
Từ (3) và (6) kết hợp với tiên đề Euclide ⇒ M, N, E thẳng hàng
Bạn tự vẽ hình nha
a) Cét 2 tam giác ABD VÀ ACD ta có :
AB = AC ( vì tam giác ABC cân )
góc A1 = A2 ( vì AD là tia pg của góc BAC )
AD là cạnh chung
= > tam giác ABD = ACD ( c.g.c )
b) Vì tg ABD = ACD ( cmt )
=> góc D1 = D2 ( 2 góc tương ứng )
mà D1 và D2 là 2 góc kề bù
= > góc D1 + D2 = 180 độ
mà D1 = D2
=> D1= D2= 180 độ : 2 = 90 độ
=>AD vuông góc với BC
c) Vì MD song song với AC
=> D1 = góc C ( 2 góc đồng vị )
mà góc B=C
=> B = D1
=> Tg MBD cân tại M
=> MB = MD
Câu d bạn tự làm nha
Bạn tự vẽ hình nha
a) Cét 2 tam giác ABD VÀ ACD ta có :
AB = AC ( vì tam giác ABC cân )
góc A1 = A2 ( vì AD là tia pg của góc BAC )
AD là cạnh chung
= > tam giác ABD = ACD ( c.g.c )
b) Vì tg ABD = ACD ( cmt )
=> góc D1 = D2 ( 2 góc tương ứng )
mà D1 và D2 là 2 góc kề bù
= > góc D1 + D2 = 180 độ
mà D1 = D2
=> D1= D2= 180 độ : 2 = 90 độ
=>AD vuông góc với BC
c) Vì MD song song với AC
=> D1 = góc C ( 2 góc đồng vị )
mà góc B=C
=> B = D1
=> Tg MBD cân tại M
=> MB = MD
Câu d bạn tự làm nha
xét∆ABD và∆ACD có:
BD=CD
AB=AC
Chung AD
=) ∆ABD=∆ACD( c-g-c )
b)do AB=AC =) ∆ABC cân tai A .
Lại có: BD=CD=)AD là trung tuyến∆ABC .
Suy ra AD là phân giác góc BAC
c) do trong∆ cân thì đường trung tuyến vừa là phân giác vừa là đường cao vừa là trung trực nên AD vuông góc với BC
=>AD vuông góc với BC
mà BC//d
=> AD vuông góc với d
1/
a/ Ta có AB < BC (5cm < 6cm)
=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ABC}< \widehat{A}\)
b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) (đpcm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)
và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)
=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)
=> F là trung điểm AB (đpcm)
d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))
=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)
=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:
\(BG=\sqrt{BD^2+GD^2}\)
=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)
=> \(BG=\sqrt{9+\frac{64}{9}}\)
=> \(BG=\sqrt{\frac{145}{9}}\)
=> BG \(\approx\)4, 01 (cm)
â)xét tam giác abd và acd có
ab=ac(abc là tam giác cân )
ad chung
góc a1=a2(ad là tia phân giác góc a)
=>tam giác abd=acd(trường hợp cạnh-góc -cạnh)
b)vì tam giác abc=acd(câu a)=>bd=cd=>ad là trung tuyến cạnh bc
mà cf là đuong trung tuyển cạnh ba=>ad và cf cùng đi qua một điểm
=> g là trọng tâm
câu c mình vẫn chưa nghĩ ra được .xin lỗi nha
c) H là trung điểm của CD \(\Rightarrow\)DH=HC
mà EH vuông góc vs DC \(\Rightarrow\) EH là đường cao
\(\Rightarrow\)EH là đường trung trực của CD \(\Rightarrow\)ED=EC \(\Rightarrow\)tam giác DEC cân tại E
d) tam giác GBC cân tại G ( CM tương tự như trên )
\(\Rightarrow\) góc GBC =GCB
mà \(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)
\(\widehat{GBD}+\widehat{ABE}=\widehat{B}\) ; \(\widehat{GCB}+\widehat{ACF}=\widehat{C}\)
\(\Rightarrow\) GÓC ABE = ACF
TAM GIÁC ABE = TAM GIÁC ACF (G.C.G)
\(\Rightarrow\) AE=AF
MÀ AF=1/2AB ( CF là đường trung tuyến ) ; AB=AC (tam giác ABC cân tại A )
\(\Rightarrow\) AE = 1/2 AC \(\Rightarrow\) E LÀ TRUNG ĐIỂM CỦA AC
\(\Rightarrow\) BE LÀ ĐƯỜNG TRUNG TUYẾN
mà G là trọng tâm của tam giác ABC
\(\Rightarrow\)BE đi qua G \(\Rightarrow\)3 điểm B,E,G thẳng hàng
a, Vì tam giác ABC cân tại A
AB = AC ( tính chất )
Xét tam giác ABH và tam giác ACD có
AB = AC
AD chung
BD=DC
suy ra 2 tam giác bàng nhau ( c.c.c) đúng ko ae
Lời giải:
Xét tam giác $ABD$ và $ACD$ có:
$AD$ chung
$\widehat{ADB}=\widehat{ADC}=90^0$
$AB=AC$ (do $ABC$ cân tại $A$)
$\Rightarrow \triangle ABD=\triangle ACD$ (ch-cgv)
$\Rightarrow \widehat{BAD}=\widehat{CAD}$
$\Rightarrow AD$ là phân giác $\widehat{BAC}$
Cũng từ tam giác bằng nhau trên
$\Rightarrow BD=DC$
$\Rightarrow D$ là trung điểm $BC$
Hình vẽ: