Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
nên DB=DC
b: BE⊥AC
DC⊥AC
Do đó: BE//DC
c: \(\widehat{EBC}=\widehat{DCB}\)
mà \(\widehat{DCB}=\widehat{DBC}\)
nên \(\widehat{EBC}=\widehat{DBC}\)
hay BC là tia phân giác của góc EBD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD vuông góc BC
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
góc ABE=góc DBE
=>ΔBAE=ΔBDE
b: BA=BD
EA=ED
=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ
góc HAD+góc BDA+90 độ
góc BAD=góc BDA
=>góc CAD=góc HAD
=>AD làphân giác của góc HAC
a: Xét ΔDAB vuông tại B và ΔDAC vuông tại C có
DA chung
AB=AC
Do đó:ΔDAB=ΔDAC
b: Ta có: ΔDAB=ΔDAC
nên DB=DC
=>ΔDBC cân tại D
mà \(\widehat{BDC}=60^0\)
nên ΔDBC đều