K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

đây hình như là toán lớp 8 nâng cao thỉ phải

31 tháng 7 2017

có lẽ vậy

20 tháng 8

Làm A và B kiểu gì vậy bạn, cho mình xem với

12 tháng 4 2016

Đề bài “Dây quấn ống trụ tròn” như sau:

"A string is wound symmetrically around a circular rod. The string goes exactly 4 times around the rod. The circumference of the rod is 4 cm. and its length is 12 cm. Find the length of the string? Show all your work".

Tạm dịch là:

“Một sợi dây được quấn đối xứng 4 vòng quanh một ống trụ tròn đều. Ống trụ có chu vi 4 cm và độ dài là 12 cm.

Do chu vi ống trụ là 4 cm nên khi "trải phẳng" ống trụ, ta sẽ được một hình chữ nhật có kích thước 4x12 (cm).

Sợi dây duỗi thẳng sẽ trở thành 4 đường chéo của 4 hình chữ nhật có kích thước 3x4 (cm).

Áp dụng định lý Pi-ta-go, ta có chiều dài mỗi đường chéo (hay mỗi đoạn dây) sẽ là √3² + 4² = 5 (cm).

Do mỗi đường chéo có kích thước bằng nhau nên tổng chiều dài sợi dây là 5x 4= 20 (cm).

Đáp số; 20 cm

12 tháng 4 2016

Áp dụng định lý Pi-ta-go, ta có chiều dài mỗi đường chéo (hay mỗi đoạn dây) sẽ là √3² + 4² = 5 (cm).

Do mỗi đường chéo có kích thước bằng nhau nên tổng chiều dài sợi dây là 5x 4= 20 (cm).

Đáp số; 20 cm

6 tháng 7 2016

A B C M D E

a) Ta có : Góc MDB = góc CME (gt) ; Góc B = góc C (tam giác ABC cân tại A)

=> \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\) hay  \(\frac{BM}{CE}=\frac{BD}{BM}\) ( M là trung điểm BC)

\(\Rightarrow BM^2=BD.CE\)

b) Ta có : Góc BMD = góc MEC (tam giác DBM và MCE đồng dạng)

Mà BME là góc ngoài tam giác MEC => góc BMD + góc DME = góc MEC + góc MCE = góc BMD + góc MCE

=> Góc DME = góc MCE = góc MBA (1)

Từ  \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\) hay \(\frac{DM}{ME}=\frac{MC}{CE}\) (2)

Từ (1) và (2) suy ra \(\Delta DME~\Delta MCE\left(c.g.c\right)\) mà \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\Delta DBM~\Delta DME\) 

Vậy ta có điều phải chứng minh.

25 tháng 9 2017

a, ^BOD + ^OBD = 120 = ^BOD + ^EOC (vì ^DOE = 60) 
=> ^BDO = ^EOC 
=> ∆BDO đồng dạng ∆COE 
=> BD/BO = CO/CE 
<=> BD.CE = BC²/4 
b, DO/OE = BD/CO 
<=> BO/OE = BD/OD 
=> ∆BOD đồng dạng ∆OED 
=> ^BDO = ^ODE 
=> OD là tia phân giác của góc BDE 
c, kẻ OI,OK lần lượt vuông góc với AB,DE 
AB tiếp xúc với (O;OI) 
có ∆IOD = ∆KOD (cạnh huyền góc nhọn) 
=> OI = OK 
mà OK ┴ DE 
=> (O) luôn tiếp xúc với DE

1 tháng 11 2020

60 o 1 2 A B C D E H O K

a) \(\Delta ABC\Rightarrow\widehat{B}=\widehat{C}=60^o\)

+) \(\Delta BDO\)có : \(\widehat{B}+\widehat{D_1}+\widehat{BOD}=180^o\)

\(\Rightarrow\widehat{D_1}=180^o-\widehat{B}-\widehat{BOD}\)

           \(=180^o-60^o-\widehat{BOD}\)

            \(=120^o-\widehat{BOD}\left(1\right)\)

Ta lại có :

\(\widehat{BOD}+\widehat{DOE}+\widehat{EOC}=\widehat{BOC}=180^o\)

\(\Rightarrow\widehat{EOC}=180^o-\widehat{DOE}-\widehat{BOD}\)

                \(=180^o-60^o-\widehat{BOD}\)

                  \(=120^o-\widehat{BOD}\left(2\right)\)

Từ (1) và (2) , suy ra : \(\widehat{D_1}=\widehat{EOC}\)

\(\Delta BOD\)và \(\Delta EOC\)có :

\(\widehat{B}=\widehat{C}=60^o\)

\(\widehat{D_1}=\widehat{EOC}\left(cmt\right)\)

\(\Rightarrow\Delta BOD~\Delta EOC\)

\(\Rightarrow\frac{BO}{CE}=\frac{BD}{CO}\)

\(\Rightarrow BD.CE=BO.CO=\frac{BC^2}{4}\)

b) \(\Delta BOD~\Delta EOC\)

\(\Rightarrow\frac{OD}{EO}=\frac{BD}{CO}\)

mà CO = BO \(\Rightarrow\frac{OD}{EO}=\frac{BD}{BO}\)

\(\Delta BOD\)và \(\Delta OED\)có :

\(\widehat{B}=\widehat{O}\left(=60^o\right)\)

\(\frac{BD}{BO}=\frac{OD}{OE}\)

\(\Rightarrow\Delta BOD~\Delta OED\)

\(\Rightarrow\widehat{BDO}=\widehat{ODE}\)

=> OD là tia phân giác của góc BDE

c) Gọi đường tròn tâm O tiếp xúc với AB có bán kính R

Gọi H, K là chân đường vuông góc hạ từ O đến DE và AB

=> R = OK

O thuộc đường phân giác của \(\widehat{BDE}\)

=> OH = OK.

=> OH = R

=> DE tiếp xúc với ( O ; R ) (đpcm)

14 tháng 3 2018

Lời giải

Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Gọi đường tròn tâm O tiếp xúc với AB có bán kính R.

Gọi H, K là chân đường vuông góc hạ từ O đến DE và AB.

⇒ R = OK.

O ∈ đường phân giác của Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ OH = OK.

⇒ OH = R

⇒ DE tiếp xúc với (O; R) (đpcm).

23 tháng 12 2018

Lời giải

Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Gọi đường tròn tâm O tiếp xúc với AB có bán kính R.

Gọi H, K là chân đường vuông góc hạ từ O đến DE và AB.

⇒ R = OK.

O ∈ đường phân giác của Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ OH = OK.

⇒ OH = R

⇒ DE tiếp xúc với (O; R) (đpcm).

23 tháng 8 2019

a, Ta có : \(\widehat{DMC}\) = \(\widehat{B} + \widehat{BDM}\)

Xét \(\bigtriangleup{DMB}\)\(\bigtriangleup{MCE}\) , có :

\(\widehat{DME} = \widehat{B}\)

\(\widehat{BDM} = \widehat{EMC}\)

\(\Rightarrow\) \(\bigtriangleup{DMB}\) ~ \(\bigtriangleup{MCE}\) (g.g)

\(\Rightarrow\) \(\dfrac{DB}{BM} = \dfrac{MC}{EC} <=> BD.CE = BM . MC = a^2\) (đpcm)

b, Vì \(\bigtriangleup{DBM} \) \(\sim \) \(\bigtriangleup{MCE} <=> \dfrac{DM}{ME} = \dfrac{BD}{CM}\)

hay \(\dfrac{DM}{ME}= \dfrac{BD}{BM} \)

\(\Rightarrow\) \(\bigtriangleup{DME} \sim \bigtriangleup{DMB}\)

\(\Rightarrow\) \(\widehat{MDE} = \widehat{BDM} \)

\(\Rightarrow\) DM là tia phân giác của \(\widehat{BDE}\) (đpcm)