Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
a: Xét ΔAMB và ΔAMC có
AM chung
\(\widehat{BAM}=\widehat{CAM}\)
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>ME=MF
=>ΔMEF cân tại M
c: ta có: ΔAEM=ΔAFM
=>AE=AF
=>A nằm trên đường trung trực của EF(1)
ta có: ME=MF
=>M nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra AM là đường trung trực của EF
=>AM\(\perp\)EF
d: Kẻ FH\(\perp\)BC
Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEIB vuông tại I và ΔFHC vuông tại H có
EB=FC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔEIB=ΔFHC
=>EI=FH và BI=CH
Ta có: BI+IM=BM
CH+HM=CM
mà BI=CH và BM=CM
nên IM=HM
=>M là trung điểm của IH
Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM\(\perp\)BC
=>AM//KI//FH
Xét hình thang FHIK có
M là trung điểm của HI
MA//KI//FH
Do đó: A là trung điểm của KF
tham khảo
a: Xét ΔAMB và ΔAMC có
AB=AC
ˆBAM=ˆCAMBAM^=CAM^
AM chug
Do đó: ΔABM=ΔACM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ˆEAM=ˆFAMEAM^=FAM^
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
c: Ta có: ΔAEM=ΔAFM
nên ME=MF
mà AE=AF
nên AM là đường trung trực của EF
hay AM⊥EF
a: Xét ΔAMB và ΔAMC có
AB=AC
ˆBAM=ˆCAMBAM^=CAM^
AM chug
Do đó: ΔABM=ΔACM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ˆEAM=ˆFAMEAM^=FAM^
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
hay ΔAEF cân tại A
c: Ta có: ΔAEM=ΔAFM
nên ME=MF
mà AE=AF
nên AM là đường trung trực của EF
hay AM⊥EF
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: AE=AF
Xét ΔABC có AE/AB=AF/AC
nên FE//BC
AB = AC => Tam giác ABC cân tại A
a. Xét tam giác AMB và tam giác AMC
AB = AC ( gt )
Góc B = góc C ( ABC cân )
BM = CM ( gt )
Vậy...... ( c.g.c)
=> góc BAM = góc CAM ( 2 góc tương ứng )
=> AM là phân giác góc A
b. trong tam giác cân ABC đường phân giác cũng là đường cao
=> AM vuông BC
c.tam giác MEF là tam giác cân vì:
xét tam giác vuông BME và tam giác vuông CMF
Góc B = góc C
MB = MC ( gt )
Vậy....( cạnh huyền. góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: ME=MF
hay ΔMEF cân tại M
cả hai bài tự kẻ hình nghen:3333
bài 1
a) xét tam giác BAD và tam giác BED có
B1= B2 ( BD là p/g của góc ABC)
BD chung
BAD=BED(=90 độ)
=> tam giác BAD= tam giác BED( ch-gnh)
=> BA=BE ( hai cạnh tương ứng)
=> tam giác BAE cân B mà ABC =60 độ=> tam giác BAE đều
b) từ tam giác BAD= tam giác BED=> AD= ED ( hai cạnh tương ứng)
xét tam giác DEC và tam giác ADK có
DAK=DEC(= 90 độ)
AK=EC (gt)
AD=ED (cmt)
=> tam giác DAK= tam giác DEC (cgc)
=> ADK=EDC ( hai góc tương ứng)
ta có A,D,C thẳng hàng
=> ADE +EDC= 180 độ
mà EDC=ADK => ADE+ADK=180 độ=> KDE= 180 độ=> K,D,E thẳng hàng
bài 2
a) xét tam giác ABM và tam giác ACM có
AB=AC( gt)
góc B= gócC (gt)
BM=CM (gt)
=> tam giác ABM= tam giác ACM(cgc)
b) từ tam giác ABM= tam giácv ACM
=> A1=A2(hai góc tương ứng)
xét tam giác AME và tam giác AMF có
AEM=AFM(=90 độ)
A1=A2(cmt)
AM chung
=> tam giác AME= tam giác AMF (ch-gnh)
=> AE=AF (hai cạnh tương ứng)
=> tam giác AEF cân A
c) vì tam giác ABC cân A => B=C= (180 độ -A)/2
vì tam giác AEF cân A=> E=F= (180 độ -A)/2
=> E=B mà E đồng vị với B=> EF//BC
Giải:
a)Vì tam giác ABC cân tại A=> <ABC=<ACB và AB=AC (dấu "<" trước tên góc là kí hiệu của góc nha)
Xét tam giác AMB và tam giác AMC có:
+<MAC=<MAB(AM là phân giác của <BAC)
+AB=AC(cmt)
+AM chung
=>tam giác AMB=tam giác AMC(g.c.g)
b)Xét tam giác AEM và tam giác AFM có:
+AM chung
+<MAE=<MAP(AM là phân giác của <BAC)
+<AEM=<APM=90°(gt)
=>tam giác AEM=tam giác AFM (ch-gn)
=>AE=AF(2 cạnh tương ứng)
=>tam giác AFE là tam giác cân.
a,Xét ∆AMB và ∆AMC có :
AB = AC (giả thiết)
∠BAM = ∠CAM (giả thiết)
AM chung
=> ∆AMB = ∆AMC (c.g.c)
b, Xét 2 tam giác vuông AME và AMF có :
AM chung
∠EAM = ∠FAM (giả thiết)
=> ∆AME = ∆AMF (cạnh huyền - góc nhọn)
=> AE = AF (cặp cạnh tương ứng)
=> ∆AFE cân tại A
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
bạn vẽ hình cho mình xem với