K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

A B C M E F P N Q

a,  xét tứ giác AFME có : 

AE // FM (Gt)

EM // AF (gt)

=> AFME là hình bình hành (đn)

=> AE = MF và EM = AF (tc)

=> Chu vi AEMF = 2AE + 2EM = 2(AE + EM)               (1)

EM // AC (Gt) mà ^EMB đồng vị ^ACB

=> ^EMB = ^ACB (đl)

^ABC = ^ACB do tam giác ABC cân tại A (gt)

=> ^EMB = ^ABC

=> tam giác EMB cân tại E (dh)

=> EM = EB (đn) và (1)

=> Chu vi AEMF = 2(AE + EB)

AE + EB = AB

=> Chu vi AEMF = 2AB

AB =  7 cm (Gt)

=> chu vi AEMF = 2.7 = 14

b, gọi EF cắt MN tại P

kẻ AQ _|_ EF

xét tam giác EPN và tam giác EPM có : EP chung

^EPN = ^EPM = 90

PM = PN do M đx với N qua EF

=> tam giác EPN = tam giác EPM (2cgv)

=> NE  = EM (2)

và ^NEP = ^MEP (đn)

^NEP + ^NEF = 180 (kb)

^MEP + ^MEF = 180 (kb)

=> ^NEF = ^MEF 

^MEF = ^EFA (slt MF // AE)

=> ^NEF  = ^AFE             (3)

^NEF + ^NEP = 180 (kb)

^AFE + ^AFQ = 180 (kb)

=> ^NEP = ^AFQ 

AF =EM do AEFM là hbh và (2) => NE = EF

xét tam giác NEP và tam giác AFQ có : ^NPE = ^AQF = 90

=> tam giác NEP = tam giác AFQ (ch-gn)

=> NP = AQ

NP _|_ EF; AQ _|_ AF (cv) => NP // AQ

=> NAQP là hbh

=> NA // EF và (3)

=> NEFA là hình thang cân

c, có NEA là góc ngoài của tam giác NEB => ^NEA = ^ENB + ^EBN 

NE = EM (Câu b); EB = EM (câu a) => EN = EB => tam giác ENB câ tại E (đn) => ^ENB = ^EBN

=> ^NEA = 2^EBN 

tương tự với góc EAM là góc ngoài của tam giác EBM => ^EAM = 2^EBM

=> ^NEA + ^EAM = 2(^EBN + ^EBM)

=> ^NEM = 2^NBM => ^NBM = ^NEM : 2

có : ^NEF + ^MEF = ^NEM mà ^NEF = ^MEF (câu b) => ^NEF = ^NEM : 2

=> ^NBM = ^NEF

^NBM = ^ABC + ^ABN 

^ABC = ^ACB ; ^ABN = ^ENB 

=> ^NEF = ^C + ^ENB

^ANE + ^NEF = 180 (tcp)

=> ^ANE + ^ENB + ^C = 180

=> ^BNA + ^C = 180

d, CHƯA NGHĨ RA

5 tháng 2 2019

Nhờ làm câu d thôi

Mình còn câu í. Mình cho

8 tháng 4 2019

Câu c làm ntn v bn ?

a: Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)

 

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

16 tháng 12 2021

a: Xét tứ giác AEMF có 

AE//MF

ME//AF

Do đó: AEMF là hình bình hành

mà \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật