Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có
BM=CN
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMHB=ΔNKC
b: Ta có: ΔMHB=ΔNKC
nên HB=KC
Ta có: AH+HB=AB
AK+KC=AC
mà BA=AC
và HB=KC
nên AH=AK
c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có
AH=AK
HM=KN
Do đó: ΔAHM=ΔAKN
Suy ra: AM=AN
a: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
DB=EC
\(\widehat{DBM}=\widehat{ECN}\)(ΔABC cân tại A)
Do đó: ΔMBD=ΔNCE
b: Ta có: ΔMBD=ΔNCE
=>MB=NC
Ta có: AM+MB=AB
AN+NC=AC
mà MB=NC và AB=AC
nên AM=AN
Xét ΔAMK vuông tại M và ΔANK vuông tại N có
AK chung
AM=AN
Do đó: ΔAMK=ΔANK
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A
b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{BDM}=\widehat{CEN}\)
Do đó: ΔMBD=ΔNCE
c: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
d: Ta có: IB=IC
nên I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI là đường trung trực của BC
Ta có: ΔABC cân tại A
mà AI là đường trung trực
nên AI là tia phân giác của góc BAC
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a) Xét tam giác MBD vuông tại D và tam giác NCE vuông tại E có:
BM=CN(gt)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)
Suy ra \(\Delta MBD=\Delta NCE\)(cạnh huyền-góc nhọn)
=>EC=BD(2 cạnh tương ứng)
b) Xét tam giác ADB và tam giác ACE có:
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)
AB=AC(tam giác ABC cân)
EC=BD(cmt)
Suy ra \(\Delta ADB=\Delta ACE\)(c.g.c)
=>AD=AE(2 cạnh tương ứng)
a, xét tam giác BDM và tam giác CEN có :
góc BDM = góc CEN = 90
BM = NC (Gt)
góc ABC = góc ACB do tam giác ABC cân tại A (Gt)
=> tam giác BDM = tam giác CEN (ch-gn)
b, tam giác BDM = tam giác CEN (câu a)
=> góc BMD = góc CNE (đn)
góc BMD + góc DMA = 180 (kb)
góc CNE + góc ENA = 180 (kb)
=> góc DMA = góc ENA (1)
có AB = AC do tam giác ABC cân tại A (gt)
BM = CN (gt)
BM + MA = AB
CN + NA = AC
=> MA = NA (2)
xét tam giác DMA và tam giác ENA có MD = EN do tam giác BDM = tam giác CEN (câu a)
(1)(2)
=> tam giác DMA = tam giác ENA (c-g-c)
=> AD = AE (đn)