K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

A B C M N = =

a) Ta có: 

AM + MB = AB

AN + NC = AC

Mà AB = AC(△ABC cân) và AM = AN (gt)

=> MB = NC

Xét △MBC và △NCB có:

MB = NC (cmt)

MBC = NCB (△ABC cân)

BC: chung

=> △MBC = △NCB (c.g.c)

=> BN = CM (2 cạnh tương ứng)

b) Vì △MBC = △NCB

=> MCB = NBC (2 góc tương ứng)

=> △BOC cân

c) Vì AM = AN (gt)

=> △AMN cân tại A

=> AMN = \(\frac{180^o-A}{2}\)(1)

Vì △ABC cân tại A

=> ABC = \(\frac{180^o-A}{2}\)(2)

Từ (1) và (2) => AMN = ABC

Mà hai góc AMN và  ABC ở vị trí đồng vị

=> MN // BC

3 tháng 2 2023

a) Xét ΔBMC và ΔCNB có :

          BM=CN ( AB=AC; AM=AN )

          góc B = góc C ( ΔABC cân tại A )

         BC : chung

suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )

suy ra : đpcm

b) chứng minh EBC cân nha em

Từ : ΔBMC = ΔCNB

suy ra : góc MCB = góc NBC ( 2 góc tương ứng )

suy ra : đpcm

c) ta có : ΔABC cân tại A

suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)

ta lại có : ΔAMN cân tại A 

suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)

Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )

16 tháng 11 2015

A B C M N I

Xét tam giác ABN và ACM có: AB = AC (vì tam giác ABC cân tại A); góc A chung; AN = AM (gt)

=> tam giác ABN = ACM (c - g - c)

=> góc ABN = ACM (2 góc tương ứng)

Mà có góc ABC = ACB (do tam giác ABC cân tại A)

Nên góc ABC - ABN = ACB - ACM => góc IBC = ICB => tam giác BIC cân tại I

16 tháng 11 2015

Ko thì còn cách nào nữa Ngô Nam

16 tháng 12 2016

A B C M N I 1 2 1 2

a) Xét ΔABN và ΔACM có:

AB=AC(gt)

\(\widehat{A}\) : góc chung

AN=AM(gt)

=> ΔABN=ΔACM(c.g.c)

=> \(\widehat{B_1}=\widehat{C_1}\)

Vì: ΔABC cân tại A(gt)

=> \(\widehat{B}=\widehat{C}\)

Vì: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}\)

\(\widehat{C}=\widehat{C_1}+\widehat{C_2}\)

Mà: \(\widehat{B}=\widehat{C}\left(cmt\right);\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)

=> \(\widehat{B_2}=\widehat{C_2}\)

=> ΔBIC cân tại I

 

16 tháng 12 2016

Ta có hình vẽ sau:

B C A M N I

Vì ΔABC cân tại A => \(\widehat{ABC}=\widehat{ACB}\)

và AB = AC

Ta có: MB = AB - AM ; NC = AC - AN

mà AB = AC (cmt) ; AM = AN (gt)

=> MB = NC

Xét ΔNCB và ΔMBC có:

BC: Cạnh chung

\(\widehat{ABC}=\widehat{ACB}\) (cm trên)

MB = NC (cm trên)

=> ΔNCB = ΔMBC (c.g.c)

=> \(\widehat{NBC}=\widehat{MCB}\) (2 góc tương ứng)

\(\widehat{NBC}=\widehat{MCB}\) (cm trên) => ΔBIC cân (đpcm)

7 tháng 5 2017

hình tự vẽ nhé

a)do tam giác ABC cân ở A=>AB=AC

m,n lần lượt là trung điểm AB,AC=>AM=AN

b)xét tam giác ANG và tam giác CNK có AN=NC, góc ANG=góc CNK ( đối đỉnh),GN=NK

=>tam giác ANG=tam giác CNK (c-g-c)=> góc GAN=góc KCN (g t ư)=>AG//CK

c) Do BN, CM là các đường trung tuyến cắt nhau tại G=> G là trọng tâm tam giác ABC=>BG=2GN

mà GN=NK=>BG=GN+NK=GK

d)tam giác ANG=CNK=>AG=CK

=>BC+AG=BC+CK>BK(bđt tam giác)

lại có góc AMN là góc nhọn=>góc BMN tù=>BN>MN

=>BC+AG>BK>BN>MN

16 tháng 4 2018

hình tự vẽ nhé

a)do tam giác ABC cân ở A=>AB=AC

m,n lần lượt là trung điểm AB,AC=>AM=AN

b)xét tam giác ANG và tam giác CNK có AN=NC, góc ANG=góc CNK ( đối đỉnh),GN=NK

=>tam giác ANG=tam giác CNK (c-g-c)=> góc GAN=góc KCN (g t ư)=>AG//CK

c) Do BN, CM là các đường trung tuyến cắt nhau tại G=> G là trọng tâm tam giác ABC=>BG=2GN

mà GN=NK=>BG=GN+NK=GK

d)tam giác ANG=CNK=>AG=CK

=>BC+AG=BC+CK>BK(bđt tam giác)

lại có góc AMN là góc nhọn=>góc BMN tù=>BN>MN

=>BC+AG>BK>BN>MN

a: Xét ΔABN và ΔACM có 

AB=AC

\(\widehat{A}\) chung

AN=AM

Do đó: ΔABN=ΔACM

1 tháng 3 2021

a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN

b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi

1 tháng 3 2021

Bớt buff đi bạn ơi :)