Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBMC và ΔCNB có :
BM=CN ( AB=AC; AM=AN )
góc B = góc C ( ΔABC cân tại A )
BC : chung
suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )
suy ra : đpcm
b) chứng minh EBC cân nha em
Từ : ΔBMC = ΔCNB
suy ra : góc MCB = góc NBC ( 2 góc tương ứng )
suy ra : đpcm
c) ta có : ΔABC cân tại A
suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)
ta lại có : ΔAMN cân tại A
suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)
Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )
Xét tam giác ABN và ACM có: AB = AC (vì tam giác ABC cân tại A); góc A chung; AN = AM (gt)
=> tam giác ABN = ACM (c - g - c)
=> góc ABN = ACM (2 góc tương ứng)
Mà có góc ABC = ACB (do tam giác ABC cân tại A)
Nên góc ABC - ABN = ACB - ACM => góc IBC = ICB => tam giác BIC cân tại I
a) Xét ΔABN và ΔACM có:
AB=AC(gt)
\(\widehat{A}\) : góc chung
AN=AM(gt)
=> ΔABN=ΔACM(c.g.c)
=> \(\widehat{B_1}=\widehat{C_1}\)
Vì: ΔABC cân tại A(gt)
=> \(\widehat{B}=\widehat{C}\)
Vì: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}\)
\(\widehat{C}=\widehat{C_1}+\widehat{C_2}\)
Mà: \(\widehat{B}=\widehat{C}\left(cmt\right);\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)
=> \(\widehat{B_2}=\widehat{C_2}\)
=> ΔBIC cân tại I
Ta có hình vẽ sau:
Vì ΔABC cân tại A => \(\widehat{ABC}=\widehat{ACB}\)
và AB = AC
Ta có: MB = AB - AM ; NC = AC - AN
mà AB = AC (cmt) ; AM = AN (gt)
=> MB = NC
Xét ΔNCB và ΔMBC có:
BC: Cạnh chung
\(\widehat{ABC}=\widehat{ACB}\) (cm trên)
MB = NC (cm trên)
=> ΔNCB = ΔMBC (c.g.c)
=> \(\widehat{NBC}=\widehat{MCB}\) (2 góc tương ứng)
Vì \(\widehat{NBC}=\widehat{MCB}\) (cm trên) => ΔBIC cân (đpcm)
hình tự vẽ nhé
a)do tam giác ABC cân ở A=>AB=AC
m,n lần lượt là trung điểm AB,AC=>AM=AN
b)xét tam giác ANG và tam giác CNK có AN=NC, góc ANG=góc CNK ( đối đỉnh),GN=NK
=>tam giác ANG=tam giác CNK (c-g-c)=> góc GAN=góc KCN (g t ư)=>AG//CK
c) Do BN, CM là các đường trung tuyến cắt nhau tại G=> G là trọng tâm tam giác ABC=>BG=2GN
mà GN=NK=>BG=GN+NK=GK
d)tam giác ANG=CNK=>AG=CK
=>BC+AG=BC+CK>BK(bđt tam giác)
lại có góc AMN là góc nhọn=>góc BMN tù=>BN>MN
=>BC+AG>BK>BN>MN
hình tự vẽ nhé
a)do tam giác ABC cân ở A=>AB=AC
m,n lần lượt là trung điểm AB,AC=>AM=AN
b)xét tam giác ANG và tam giác CNK có AN=NC, góc ANG=góc CNK ( đối đỉnh),GN=NK
=>tam giác ANG=tam giác CNK (c-g-c)=> góc GAN=góc KCN (g t ư)=>AG//CK
c) Do BN, CM là các đường trung tuyến cắt nhau tại G=> G là trọng tâm tam giác ABC=>BG=2GN
mà GN=NK=>BG=GN+NK=GK
d)tam giác ANG=CNK=>AG=CK
=>BC+AG=BC+CK>BK(bđt tam giác)
lại có góc AMN là góc nhọn=>góc BMN tù=>BN>MN
=>BC+AG>BK>BN>MN
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi
a) Ta có:
AM + MB = AB
AN + NC = AC
Mà AB = AC(△ABC cân) và AM = AN (gt)
=> MB = NC
Xét △MBC và △NCB có:
MB = NC (cmt)
MBC = NCB (△ABC cân)
BC: chung
=> △MBC = △NCB (c.g.c)
=> BN = CM (2 cạnh tương ứng)
b) Vì △MBC = △NCB
=> MCB = NBC (2 góc tương ứng)
=> △BOC cân
c) Vì AM = AN (gt)
=> △AMN cân tại A
=> AMN = \(\frac{180^o-A}{2}\)(1)
Vì △ABC cân tại A
=> ABC = \(\frac{180^o-A}{2}\)(2)
Từ (1) và (2) => AMN = ABC
Mà hai góc AMN và ABC ở vị trí đồng vị
=> MN // BC