Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình giùm)
a/ \(\Delta AMB\)và \(\Delta ANC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
MB = NC (gt)
=> \(\Delta AMB\)= \(\Delta ANC\)(c - g - c) => AM = AN (hai cạnh tương ứng) (đpcm)
\(\Delta AHB\)và \(\Delta AHC\)có: AB = AC (\(\Delta ABC\)cân tại A)
BH = HC (H là trung điểm của BC)
Cạnh AH chung
=> \(\Delta AHB\)= \(\Delta AHC\)(c - c - c) => \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}\)= 180o (kề bù)
=> \(2\widehat{AHB}=180^o\)
=> \(\widehat{AHB}=90^o\)
=> \(AH\perp BC\)(đpcm)
b/ \(\Delta AHM\)vuông và \(\Delta AHN\)vuông có: AM = AN (cm câu a)
Cạnh AH chung
=> \(\Delta AHM\)vuông = \(\Delta AHN\)vuông (cạnh huyền - cạnh góc vuông) => HM = HN (hai cạnh tương ứng) => H là trung điểm MN
Ta có HB = HC = \(\frac{BC}{2}=\frac{6}{2}\)= 3 (cm)
và \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lý Pitago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 32
=> AH2 = 25 - 9
=> AH2 = 16
=> AH = \(\sqrt{16}\)(vì AH > 0)
=> AH = 4 (cm)
Ta lại có BM = MN = NC (gt)
Mà BM + MN + NC = BC
=> 3BM = 6
=> BM = MN = NC = 2
=> HM = HN = 1
và \(\Delta AHM\)vuông tại H => AM2 = AH2 + MH2 (định lý Pitago)
=> AM2 = 42 + 12
=> AM2 = 16 + 1
=> AM2 = 17
=> AM = \(\sqrt{17}\)(cm) (vì AM > 0)
a: Xet ΔAMB và ΔANC có
AB=AC
\(\widehat{B}=\widehat{C}\)
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
b: BC=6cm nên BH=CH=3cm
=>AH=4(cm)
BM=BC/3=2(cm)
=>MH=1(cm)
\(AM=\sqrt{1^2+4^2}=\sqrt{17}\left(cm\right)\)
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)