K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE

=> ^ABD = ^ACE

TG ABD = TG ACE (c.g.c)

=> ABD=ACE => TG ADE cân(đpcm)

b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)

=> BH=CK (đpcm)

=> DH=KE

* Ta có: AD = AE (vì TG ADE cân)

DH=KE(CMT)

mà AD - DH = AH

     AE - KE = AK

=> AH = AK

và DH=KE ( CMT)

Do đó: HK là đường trung bình của TG ADE

=> HK // DE

c, ý b là BOC?

^HBD=^KCE (TG HBD= TG KCE )

=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)

=> TG OBC cân

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
DO đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC
\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK và AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE
\(\widehat{HBD}=\widehat{KCE}\)

Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

mà HB=CK

nên OB+HB=OC+CK

=>OH=OK

hay ΔOHK cân tại O

a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(Hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBD vuông tại H và ΔKCE vuông tại K có 

BD=CE(gt)

\(\widehat{HDB}=\widehat{KEC}\)(ΔADB=ΔAEC)

Do đó: ΔHBD=ΔKCE(cạnh huyền-góc nhọn)

c) Ta có: ΔHBD=ΔKCE(cmt)

nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)

mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)

và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

20 tháng 2 2021

Chúc học tốt

15 tháng 1 2022

a) Tam giác ABC cân tại A (gt) \(\Rightarrow\widehat{ABC}=\widehat{ACB}\) (Tính chất tam giác cân).

Mà \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABD}=180^o.\\\widehat{ACB}+\widehat{ACE}=180^o.\end{matrix}\right.\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}.\)

Xét tam giác ABD và tam giác ACE:

+ AB = AC (Tam giác ABC cân tại A).

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right).\)

+ BD = CE (gt).

\(\Rightarrow\) Tam giác ABD = Tam giác ACE (c - g - c).

\(\Rightarrow\) AD = AE (Cặp cạnh tương ứng).

\(\Rightarrow\) Tam giác ADE cân tại A (đpcm).

b) Tam giác ADE cân tại A (cmt). \(\Rightarrow\widehat{ADE}=\widehat{AED}\) (Tính chất tam giác cân).

Xét tam giác DHB và tam giác EKC (\(\widehat{DHB}=\widehat{EKC}=90^o\)) :

\(\widehat{HDB}=\widehat{KEC}\) (\(\widehat{ADE}=\widehat{AED}\)).

+ BD = CE (gt).

\(\Rightarrow\) Tam giác DHB = Tam giác EKC (cạnh huyền - góc nhọn).

\(\Rightarrow\) BH = CK (Cặp cạnh tương ứng).

Ta có: \(\left\{{}\begin{matrix}AH+HD=AD.\\AK+KE=AE.\end{matrix}\right.\)

Mà HD = KE (Tam giác DHB = Tam giác EKC); AD = AE (cmt).

\(\Rightarrow\) AH = AK \(\Rightarrow\) Tam giác AHK cân tại A. \(\Rightarrow\) \(\widehat{AHK}=\left(180^o-\widehat{A}\right):2.\)

Mà \(\widehat{ADE}=\left(180^o-\widehat{A}\right):2\) (Tam giác ADE cân tại A).

\(\Rightarrow\) \(\widehat{AHK}=\widehat{ADE}.\)

Mà 2 góc này ở vị trí đồng vị.

\(\Rightarrow\) HK // BC (dhnb).

c) Tam giác DHB = Tam giác EKC (cmt). \(\Rightarrow\) \(\widehat{HBD}=\widehat{KCE}\) (2 góc tương ứng).

Mà \(\widehat{HBD}=\widehat{CBO}\)\(\widehat{KCE}=\widehat{BCO}\) (đối đỉnh).

\(\Rightarrow\) \(\widehat{BCO}=\widehat{CBO}\)\(\Rightarrow\) Tam giác OBC là tam giác cân tại O.

d) Xét tam giác ABC cân tại A có: AM là trung tuyến (M là trung điểm BC).

\(\Rightarrow\) AM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) \(AM\perp BC.\) (1)

Xét tam giác OBC cân tại O: OM là trung tuyến (M là trung điểm BC).

\(\Rightarrow\) OM là đường cao (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) \(OM\perp BC.\) (2)

Từ (1) và (2) \(\Rightarrow\) 3 điểm O; A; M thẳng hàng.

\(\Rightarrow\) \(M\in AO.\)

Mà O là giao điểm của BH; CK (gt).

\(\Rightarrow\) O là giao điểm của AM; BH; CK.

\(\Rightarrow\) AM; BH; CK đồng quy (đpcm). 

19 tháng 7 2020

A B C D E 2 2 1 1 M H K O

A) 

TA CÓ 

\(\widehat{B_1}+\widehat{B_2}=180^o\left(kb\right)\)

\(\widehat{C_1}+\widehat{C_2}=180^o\left(kb\right)\)

mà \(\widehat{B_2}=\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

XÉT \(\Delta\)DAB VÀ \(\Delta EAC\)

\(AB=AC\left(GT\right)\)

\(\widehat{B_1}=\widehat{C_1}\left(CMT\right)\)

\(DB=EC\left(GT\right)\)

=>\(\Delta DAB=\Delta EAC\left(C-G-C\right)\)

\(\Rightarrow DA=EA\)

=>\(\Delta ADE\)CÂN TẠI A

B) VÌ \(\Delta ADE\)CÂn TẠI A

\(\Rightarrow\widehat{D}=\widehat{E}\)

XÉT \(\Delta DHB\)\(\Delta EKC\)CÓ 

\(\widehat{DHB}=\widehat{EKC}=90^o\)

\(DB=EC\left(GT\right)\)

\(\widehat{D}=\widehat{E}\left(CMT\right)\)

=>\(\Delta DHB=\Delta EKC\left(CH-GN\right)\)

\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

GIẢ SỬ GỌI O LÀ GIAO ĐIỂM CỦA AM,BH,CK

TA CÓ

 ​\(\widehat{HBD}=\widehat{CBO}\left(Đ^2\right)\)

\(\widehat{ECK}=\widehat{BCO}\left(Đ^2\right)\)

MÀ \(\widehat{HBD}=\widehat{ECK}\)

=>\(\widehat{CBO}=\widehat{BCO}\)

=> \(\Delta COB\)CÂN TẠI O

MÀ BO LÀ TIA ĐỐI CỦA BH 

      OC LÀ TIA ĐỐI CỦA CK

      OM LÀ TIA ĐỐI CỦA MA

=> \(AM,BH,CK\)ĐỒNG QUY TẠI MỘT ĐIỂM

19 tháng 7 2020

đố các bn mình có mấy giấy khen thi cấp tĩnh ?

mình đoán là 1 giấy khen thi cấp tĩnh 

5 tháng 3 2016

xin lỗi em mới học lớp 5

5 tháng 3 2016

em mới học lớp 5

10 tháng 8 2022

loading...

17 tháng 4 2016

Bạn tự vẽ hình nha!

a.

Ta có:

  • B1 + B2 = 180
  • C1 + C2 = 180 

mà B1 = C1 (tam giác ABC cân tại A)

=> B2 = C2 (1)

Xét tam giác ADB và tam giác AEC:

AB = AC (tam giác ABC cân tại A)

B2 = C2 (theo 1)

BD = CE (gt)

=> Tam giác ADB = ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE

b.

Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:

 AB = AC (tam giác ABC cân tại A)

A1 = A2 (tam giác ADB = tam giác AEC)

=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

     AH = AK (2 cạnh tương ứng)

c.

Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:

BH = CK (theo câu b)

BD = CE (gt)

=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)

Ta có: 

DBH = IBC (2 góc đối đỉnh)

KCE = ICB (2 góc đối đỉnh)

mà DBH = KCE (tam giác HDB = tam giác KEC)

=> IBC = ICB 

=> Tam giác IBC cân tại I

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó:ΔABD=ΔACE

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK; AH=AK

Xét ΔADE có 

AH/AD=AK/AE

nên HK//DE
hay HK//BC

c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)

\(\widehat{OCB}=\widehat{KCE}\)

mà \(\widehat{HBD}=\widehat{KCE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

22 tháng 3 2020

\(\infty\)