Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
1) Xét 2 tam giác vuông ΔACH và ΔBCH ta có:
AC = AB (tam giac ABC can tai C)
CH: cạnh chung
=> ΔACH = ΔBCH (c.h - c.g.v)
=> AH = BH (2 cạnh tương ứng)
=> H là trung điểm của AB
2) Có: ΔACH = ΔBCH (câu 1)
\(\Rightarrow\widehat{ACH}=\widehat{BCH}\) (2 góc tương ứng)
Xét ΔΔCD và ΔBCD ta có:
AC = AB (tam giac ABC can tai C)
\(\widehat{ACH}=\widehat{BCH}\left(cmt\right)\)
CD: cạnh chung
=> ΔACD = ΔBCD (c - g - c)
=> AD = BD (2 cạnh tương ứng)
=> Tam giác ADB cân tại D
3) Xét ΔADK và ΔADH ta có:
AK = AH (GT)
\(\widehat{KAD}=\widehat{HAD}\left(GT\right)\)
AD: cạnh chung
=> ΔADK = ΔADH (c - g - c)
\(\Rightarrow\widehat{AKD}=\widehat{AHD}\) (2 góc tương ứng)
Mà: \(\widehat{AHD}=90^0\Rightarrow\widehat{AKD}=90^0\)
=> AK ⊥ DK
Hay: AC ⊥ DK
4) Có: H là trung điểm của AB (câu 1)
=> \(AH=\frac{1}{2}AB=\frac{1}{2}.8=4\left(cm\right)\)
ΔAHD vuông tại H. Áp dụng định lý Pitago ta có:
AD2 = AH2 + DH2
=> DH2 = AD2 - AH2 = 52 - 42 (cm)
=> DH2 = 25 - 16 = 9 (cm)
=> DH = 3 (cm)