Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Δ BAK và Δ BCK có
∠BAK = ∠ BCK ( = 90o)
AB = BC ( vì Δ ABC cân tại B )
BK là cạnh chung
=> ΔBAK=ΔBCK (cạnh huyền cạnh góc vuông )
=> góc ABK = góc CBK ( hai góc tương ứng )
=> BK là tia phân giác của góc B
Cm : Xét t/giác ABE và t/giác AHE
có góc A1 = góc H1 = 900 (gt)
BE : chung
góc B1 = góc B2 (gt)
=> t/giác ABE = t/giác AHE (ch - gn)
=> AE = HE; AB = HB (các cặp cạnh tương ứng)
b) Ta có: góc A1 + góc A2 = 1800 (kề bù)
=> góc A2 = 1800 - góc A1 = 1800 - 900 = 900
=> góc A1 = góc H2 = 900
Xét t/giác AEK và t/giác HEC
có góc A2 = góc H2 = 900 (cmt)
AE = HE (cmt)
góc E1 = góc E2 (Đối đỉnh)
=> t/giác AEK = t/giác HEC (g.c.g)
=> AK = HC (hai cạnh tương ứng)
Mà AB + AK = BK
BH + HC = BC
Và AB = HB (cmt)
=> BK = BC
=> t/giác BKC là t/giác cân tại B
c) Áp dụng định lý Py - ta - go vào rồi lm
#zinc
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
a) xét \(\Delta ABC\)CÓ
\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
VÌ \(100=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
VẬY \(\Delta ABC\) VUÔNG TẠI A
trong tam giác ABC ta có :
AB2=62=36
AC2=82=64
BC2=102=100
ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )
=> tam giác ABC vuông tại A
CHÚC BẠN HỌC TỐT !!!
. ΔABE = ΔHBE
Xét ΔABE và ΔHBE, ta có :
(gt)
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
2. BE là đường trung trực của AH :
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
3. EK = EC
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE và ΔCHE
=> EK = EC
4. EC > AC
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
EB chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH và EA=EH
b: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
c: BK=BC=10cm
=>AC=8cm
a) Xét ΔBAK vuông tại A và ΔBCK vuông tại C có
BK chung
BA=BC(ΔBAC cân tại B)Do đó: ΔBAK=ΔBCK(cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{ABK}=\widehat{CBK}\)(hai góc tương ứng)
mà tia BK nằm giữa hai tia BA,BC
nên BK là tia phân giác của \(\widehat{ABC}\)(đpcm)
b) Ta có: ΔBAK=ΔBCK(cmt)
nên KA=KC(Hai cạnh tương ứng)
Ta có: BA=BC(ΔABC cân tại B)
nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có:KA=KC(cmt)
nên K nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng) (2)
Từ (1) và (2) suy ra BK là đường trung trực của AC
hay BK\(\perp\)AC(đpcm)
Vì BK là đường trung trực của AC(cmt)
nên BK vuông góc với AC tại trung điểm của AC
mà BK cắt AC tại I(gt)
nên BK\(\perp\)AC tại I và I là trung điểm của AC
Ta có: I là trung điểm của AC(cmt)
nên \(CI=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔBIC vuông tại I, ta được:
\(BC^2=BI^2+IC^2\)
\(\Leftrightarrow BI^2=BC^2-IC^2=10^2-3^2=91\)
hay \(BI=\sqrt{91}cm\)
Vậy: \(BI=\sqrt{91}cm\)