K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12(cm)

c: ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2=AM*AB

23 tháng 12 2023

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: Xét tứ giác AHKC có

I là trung điểm chung của AK và HC

=>AHKC là hình bình hành

=>AC//KH

c: Ta có: AC//HK

AC//HM

HK,HM có điểm chung là H

Do đó: K,H,M thẳng hàng

Ta có: AMHN là hình chữ nhật

=>\(\widehat{NAH}=\widehat{NMH}\)

mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)

nên \(\widehat{NMH}=\widehat{CKH}\)

Xét tứ giác MNCK có CN//MK

nên MNCK là hình thang

Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)

nên MNCK là hình thang cân

d: Ta có: AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Xét ΔCAH có

CO,AI là các đường trung tuyến

CO cắt AI tại D

Do đó: D là trọng tâm của ΔCAH

=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)

=>AK=3AD

a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có

góc DAH chung

=>ΔADH đồg dạng vơi ΔAHB

b: ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đường cao

nên AE*AC=AH^2

=>AE*AC=AD*AB

loading...  loading...  loading...  

a: Xét ΔANH vuông tại N và ΔAHB vuông tại H có

góc NAH chung

=>ΔANH đồng dạng với ΔAHB

b: ΔAHC vuông tại H có HM là đường cao

nên AM*AC=AH^2

ΔAHB vuông tại H có HN là đường cao

nên AN*AB=AH^2

=>AM*AC=AN*AB

=>AM/AB=AN/AC

c: AM/AB=AN/AC

=>ΔAMN đồng dạng với ΔABC

=>góc AMN=góc ABC

=>góc NMC+góc NBC=180 độ

=>BNMC là tứ giác nội tiếp

=>góc INB=góc ICM

Xét ΔINB và ΔICM có

góc INB=góc ICM

góc I chung

=>ΔINB đồng dạng với ΔICM

=>IN/IC=IB/IM

=>IN*IM=IB*IC