K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

góc BAM chung

=>ΔABM đồng dạng với ΔACN

=>AM/AN=AB/AC

=>AM*AC=AN*AB và AM/AB=AN/AC

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC

góc MAN chung

=>ΔAMN đòng dạng với ΔABC

c: ΔAMN đồng dạng với ΔABC

=>S AMN/S ABC=(AM/AB)^2=(cos60)^2=1/4

=>S ABC=4*S AMN

a: Xét ΔKBC vuông tại K và ΔCBA vuông tại C có

\(\widehat{KBC}\) chung

Do đó: ΔKBC~ΔCBA

b:

Ta có: \(\widehat{EMC}=\widehat{BMK}\)(hai góc đối đỉnh)

\(\widehat{BMK}+\widehat{KBM}=90^0\)(ΔBKM vuông tại K)

Do đó: \(\widehat{EMC}+\widehat{KBM}=90^0\)

Ta có: \(\widehat{MEC}+\widehat{EBC}=90^0\)(ΔBCE vuông tại C)

\(\widehat{EMC}+\widehat{KBM}=90^0\)

mà \(\widehat{EBC}=\widehat{KBM}\)

nên \(\widehat{EMC}=\widehat{MEC}\)

=>ΔEMC cân tại C

 

7 tháng 4 2021

undefinedundefined

a) Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{BAM}\) chung

Do đó: ΔAMB\(\sim\)ΔANC(g-g)

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)

\(\widehat{NAM}\) chung

Do đó: ΔAMN\(\sim\)ΔABC(c-g-c)

27 tháng 2 2022

a. -Xét △BEH và △CDH có: 

\(\widehat{BEH}=\widehat{CDH}=90^0\)

\(\widehat{BHE}=\widehat{CHD}\)(đối đỉnh)

\(\Rightarrow\)△BEH∼△CDH (g-g).

\(\Rightarrow\dfrac{BH}{CH}=\dfrac{EH}{DH}\).

-Xét △HED và △HBC có:

\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)

\(\dfrac{BH}{CH}=\dfrac{EH}{DH}\left(cmt\right)\)

\(\Rightarrow\)△HED∼△HBC (c-g-c).

b. -Ta có: \(\widehat{AED}+\widehat{DEC}=90^0\) (kề phụ).

\(\widehat{DBC}+\widehat{DCB}=90^0\) (△DBC vuông tại D).

Mà \(\widehat{DEC}=\widehat{DBC}\)(△HED∼△HBC)

\(\Rightarrow\)\(\widehat{AED}=\widehat{DCB}\)

-Xét △AED và △ACB có:

\(\widehat{AED}=\widehat{ACB}\) (cmt)

\(\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AED∼△ACB (g-g).

 

27 tháng 2 2022

c. -Có: \(\widehat{EAC}=45^0\) (gt) ; △AEC vuông tại E (AB⊥CE tại E).

\(\Rightarrow\)△AEC vuông cân tại E.

\(\Rightarrow AE=AC\sqrt{2}\)

-Ta có: △AED∼△ACB (cmt)

\(\Rightarrow\dfrac{ED}{BC}=\dfrac{AE}{AC}=\dfrac{AC\sqrt{2}}{AC}=\sqrt{2}\)

\(\Rightarrow\dfrac{ED}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow ED=2\)

 

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

góc BAM chung

=>ΔABM đồng dạng với ΔACN

b: ΔABM đồng dạng với ΔACN

=>AM/AN=AB/AC
=>AM/AB=AN/AC
mà góc MAN chung

nen ΔAMN đồng dạng với ΔABC

c: Xét ΔBKH vuông tại K và ΔBMC vuông tại M có

góc KBH chung

=>ΔBKH đồng dạng với ΔBMC

=>BK/BM=BH/BC

=>BK*BC=BH*BM

Xét ΔCKH vuông tại K và ΔCNB vuông tại N có

góc KCH chung

=>ΔCKH đồng dạng với ΔCNB

=>CK/CN=CH/CB

=>CK*CB=CH*CN

=>BH*BM+CH*CN=BK*BC+CK*BC=BC^2

d: ΔANM đồng dạng với ΔABC

=>\(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AN}{AB}\right)^2=\dfrac{1}{4}\)

=>ĐPCM

26 tháng 2 2023

oaaa cảm ơn nhiều a~

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)