Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Góc C + góc KBC = 90 độ, góc C + HAC=90 độ nên góc HBP= góc NAH
HBP+HPB=90 độ, HPB=APQ (đối đỉnh) nên NAH+APQ=90 độ nên AN vuông góc với BQ
b, Tam giác APQ có đường cao cũng là đường phân giác nên tamg giác PAQ cân do đó AN cũng là đường trung trục của tam giác APQ, nên MP=MQ, tương tự sẽ có NP=MP=NP=MQ
do đó MPNQ là hình vuông
a: Xét ΔAKB vuông tại K và ΔANC vuông tại N có
góc KAB chung
=>ΔAKB đồng dạng với ANC
=>AK/AN=AB/AC
=>AK*AC=AB*AN và AK/AB=AN/AC
b: Xét ΔAKN và ΔABC có
AK/AB=AN/AC
góc KAN chung
=>ΔAKN đồng dạng với ΔABC
=>góc AKN=góc ABC
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=20
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9,6\left(cm\right)\\BH=7,2\left(cm\right)\end{matrix}\right.\)
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{DAB}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
Suy ra: \(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)