Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
Do đó: ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ABC
b: Kẻ HM//AB(M thuộc AC)
HN//AC(N thuộc AB)
Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
=>AM=HN; AN=HM
ΔAHM có AH<AM+MH
=>AH<AM+AN
HN//AC
mà BH vuông góc AC
nên HB vuông góc HN
ΔHBN vuông tại H
=>HB<BN
HM//AB
CH vuông góc AB
Do đó: HC vuông góc HM
=>ΔHCM vuông tại H
=>HC<MC
AH<AM+AN
HB<BN
HC<MC
=>HA+HB+HC<AM+AN+BN+MC=AC+AB
Chứng minh tương tự, ta được:
HA+HB+HC<AB+BC và HA+HB+HC<AC+BC
=>3*(HA+HB+HC)<2(BA+BC+AC)
=>HA+HB+HC<2/3*(BA+BC+AC)
a: Xét tứ giác AQHP có
AQ//HP
AP//HQ
=>AQHP là hình bình hành
Xet ΔAHQ và ΔHAP có
HA chung
HQ=AP
AQ=HP
=>ΔAHQ=ΔHAP
b: ΔFBC vuông tại F
mà FM là trung tuyến
nên FM=BC/2
ΔECB vuông tại E
mà EM là trung tuyến
nên EM=BC/2=FM
=>ΔMEF cân tại M
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AEF=góc ABC
a: Xet ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
AF=AE
Do đó: ΔAFM=ΔAEM
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của góc BAC
Vì tam giác ABC cân tại A
=> góc ABC= góc ACB ( 2 góc ở đáy)
Xét tam giác FBC vuông tại F và tam giác ECB vuông tại E có:
BC là cạnh chung
Góc ABC = góc ACB (cmt)
Suy ra Tam giác FBC=tam giác ECB ( c.h-g.n)
=> CF= BE ( 2 cạnh tương ứng)
Vậy BE=CF (đpcm)
Lời giải:
Xét tam giác $ABE$ và $ACF$ có:
$\widehat{A}$ chung
$AB=AC$ (gt)
$\widehat{AEB}=\widehat{AFC}=90^0$
$\Rightarrow \triangle ABE=\triangle ACF$ (ch-gn)
$\Rightarrow AE=AF$
Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{A}\) chung
Do đó:ΔABE=ΔACF
Suy ra: BE=CF
a: \(\widehat{ACB}=180^0-70^0-67^0=43^0\)
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
c: Xét ΔABE vuông tại E và ΔADF vuông tại F có
AB=AD
\(\widehat{BAE}\) chung
Do đó: ΔBAE=ΔDAF
d: Xét ΔABD có AF/AB=AE/AD
nên FE//BD
Xét Δ vuông ABE và Δ vuông OCE có:
AB=OC (giả thiết)
gócABE=gócOCE (cùng phụ với gócA)
⇒Δ vuông ABE=Δ vuông OCE (ch-gn)
⇒BE=CE ⇒ΔBEC vuông cân tại đỉnh E
⇒gócACB=\(\dfrac{180độ-gócE}{2}\)=\(\dfrac{180độ-90độ}{2}\)=45độ
Vậy....