Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1)
=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)
Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)
Từ (1) có : \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)
Từ (2) ; (3) ; (4) => điều phải chứng minh
Cho tam giác ABC có A+B+2C=27 độ và A+3C =273 độ .so sánh các cạnh của tam giác.MÌNH ĐANG CẦN GẤP!!!
Xét tam giác ABC và tam giác AEK có :
AB = AE ( gt )
góc BAC = góc EAK ( đối đỉnh )
AC = AK ( gt )
=> tam giác ABC = tam giác AEK ( c.g.c )
Vì \(\Delta ABC\)cân tại A
\(\Rightarrow AB=AC=12cm\)và \(\widehat{B}=\widehat{C}\)
Ta có: \(\Delta ABH\)vuông tại H
\(\Rightarrow\widehat{BAH}+\widehat{B}=90^o\)(1)
Ta lại có: \(\Delta ACH\)vuông tại H
\(\Rightarrow\widehat{CAH}+\widehat{C}=90^o\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{BAH}+\widehat{B}=\widehat{CAH}+\widehat{C}\)
mà \(\widehat{B}=\widehat{C}\)\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
Xét \(\Delta BAH\)và \(\Delta CAH\)ta có: +) \(\widehat{BAH}=\widehat{CAH}\)( cmt)
+) \(AB=AC\)
+) \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\Delta BAH=\Delta CAH\left(g.c.g\right)\)
\(\Rightarrow BH=HC\)( 2 cạnh tương ứng )
mà \(BC=10cm\)
\(\Rightarrow BH=HC=5cm\)
Ta có \(\Delta BAH\)vuông tại H nên theo định lý Py-ta-go ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2+5^2=12^2\)
\(\Rightarrow AH^2=12^2-5^2=144-25=119\)
\(\Rightarrow AH=\pm\sqrt{119}\)
mà \(AH>0\)\(\Rightarrow AH=\sqrt{119}\)
Vậy \(AH=\sqrt{119}\)
a) Ta có BAD = BAH + HAD = (900-B)+HAD
BDA=DAC+BCA=(900-B)+DAC
Vì HAD=DAC
=>BAD=BDA
<=> tam giác BAD cân tại B
ta có <A+<B+<C=180
=> 2B+B+1/3B=180
=>10/3B=180
=>B=180:10/3=54
\(B=\frac{A}{2};C\cdot2\)