K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2022

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

b) Do \(AD=AB\) nên \(CA\) là trung tuyến 

Mà \(AC\cap BK=E\) với \(BK\) là trung tuyến

\(\Rightarrow E\) là trọng tâm \(\Delta BCD\)

\(\Rightarrow CE=\dfrac{2}{3}AC=\dfrac{2}{3}.6=4\left(cm\right)\Rightarrow AE=2\left(cm\right)\)

c) Ta có \(CA\) vừa là trung tuyến vừa là đường cao \(\Delta BCD\)

\(\Rightarrow\Delta BCD\) cân tại \(C\Rightarrow CB=CD\)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔBCD cân tại C

d: Xét ΔOBC có

OM là đường cao

OM là đường trung tuyến

Do đó: ΔOBC cân tại O

Suy ra: OB=OC(1)

Xét ΔOBD có
OA là đường cao

OA là đường trung tuyến

Do đó: ΔOBD cân tại O

Suy ra: OB=OD(2)

Từ (1) và (2) suy ra OB=OC=OD

hay O cách đều ba đỉnh của ΔBDC

25 tháng 4 2016

A B C D E F O

a. Áp dụng định lý Pitago cho tam giác vuông ABC ta có: \(AC^2=BC^2-AC^2=10^2-6^2=64\)

Vậy \(AC=8cm\)

b. Do D nằm trên tia đối của tia AB nên \(\widehat{CAD}=90^O\) 

Xét tam giác ABC và tam giác ADC có:

\(\widehat{CAB} = \widehat{CAD}=90^O\)

AC chung

AB=AD(giả thiết)

\(\Rightarrow\Delta ABC=\Delta ADC\)(Hai cạnh góc vuông)

c. Xét tam giác DCB có :

A là trung điểm BD,

AE song song BC 

\(\Rightarrow\) AE là đường trung bình tam giác DBC., hay E là trung điểm DC. Vậy AE là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên EA=EC=ED. Vậy tma giác AEC cân tại E. ( Còn có thể có cách khác :) ) 

d. Xét tam giác DBC có CA là trung tuyến, lại có CA = 3OA nên O là trọng tâm tam giác DBC. Do F là trung điểm BC nên DF là đường trung tuyến. Vậy O  nằm trên DF hay O, D, F thẳng hàng.

Chúc em học tốt ^^

25 tháng 4 2016

a) 

Theo định lí py ta go trong tam giác  vuông ABC  có :

BC= AB+ AC

Suy ra : AC= BC- AB

AC2 =10- 6

AC = căn bậc 2 của 36 = 6 (cm )

b)

Xét tam giác ABC  và tam giác  ADC  có :

AC  cạnh chung

Góc A1 = góc A2  = 90 độ (gt )

AB = AD ( gt )

suy ra : tam giác ABC = tam giác ADC (  c- g -c )