K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Chọn đáp án B.

Ta có: A B 2   +   A C 2   =   B C 2   ( = 100)

Suy ra, tam giác ABC là tam giác vuông tạiA. Do đó, tâm đường tròn ngoại tiếp tam giác ABC là trung điểm M của BC.

Bán kính đường tròn là: R = BC/2 = 5cm

Chu vi đường tròn ngoại tiếp tam giác ABC là:

C =  2 π . 5   =   10 π (cm)

4 tháng 3 2018

Chọn đáp án B.

Ta có: A B 2   +   A C 2   =   B C 2  ( = 100)

Suy ra tam giác ABC vuông tại A.

Do đó, tâm đường tròn ngoại tiếp tam giác ABC là trung điểm cạnh huyền BC.

Đường kính đường tròn là : d = BC = 10cm

Suy ra, bán kính đường tròn ngoại tiếp tam giác ABC là R = d/2 = 5cm

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13cm

Ta có: ΔABC vuông tại A

nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC

hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)

Bài 2: 

Ta có: ABCD là hình thang cân

nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)

hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)

24 tháng 5 2023

loading... 

Do (O) là đường tròn ngoại tiếp ∆ABC

⇒ O là giao điểm của ba đường trung trực của ∆ABC

⇒ AO là đường trung trực của ∆ABC

⇒ AO ⊥ BC tại H

⇒ H là trung điểm BC

⇒ BH = BC : 2 = 12 : 2 = 6 (cm)

Do ∠ABD là góc nội tiếp chắn nửa đường tròn

⇒ ∠ABD = 90⁰

∆ABD vuông tại B có BH là đường cao

⇒ 1/BH² = 1/AB² + 1/BD²

⇒ 1/BD² = 1/BH² - 1/AB²

= 1/36 - 1/100

= 4/225

⇒ BD² = 225/4

⇒ BD = 15/2 = 7,5 (cm)

∆ABD vuông tại B

⇒ AD² = AB² + BD² (Pytago)

= 10² + 7,5²

= 156,25

⇒ AD = 12,5 (cm)

24 tháng 5 2023

Để tính độ dài đoạn thẳng AD, ta cần tìm được tọa độ của điểm D trên đường tròn (O).

Gọi M là trung điểm của đoạn BC. Ta có AM là đường trung trực của BC, do đó OM vuông góc với BC và OM = MC = 6(cm).

Vì tam giác ABC cân tại A nên đường trung trực của BC cũng là đường cao của tam giác. Do đó, ta có AH là đường cao của tam giác ABC và AH = $\sqrt{AB^2 - BM^2}$ = $\sqrt{100 - 36}$ = $\sqrt{64}$ = 8(cm).

Ta có thể tính được AO bằng định lý Pythagoras trong tam giác vuông AOM:

$AO^2 = AM^2 + OM^2 = 10^2 - 6^2 + 6^2 = 100$

Vậy $AO = 10$ (cm).

Do đó, ta có thể tính được bán kính đường tròn (O) là $R = \frac{BC}{2} = 6$ (cm).

Gọi E là điểm đối xứng của A qua đường tròn (O). Ta có AE là đường đối xứng của AH qua đường tròn (O), do đó AE = AH = 8 (cm).

Ta có thể tính được độ dài đoạn thẳng DE bằng định lý Pythagoras trong tam giác vuông AOD:

$DE^2 = DO^2 + OE^2 = R^2 + AE^2 = 6^2 + 8^2 = 100$

Vậy $DE = 10$ (cm).

Ta cần tính độ dài đoạn thẳng AD. Ta có thể tính được độ dài đoạn thẳng HD bằng định lý Euclid:

$\frac{HD}{BD} = \frac{AH}{AB}$

$\Rightarrow HD = \frac{AH \cdot BD}{AB} = \frac{8 \cdot 6}{10} = \frac{24}{5}$ (cm)

Ta có thể tính được độ dài đoạn thẳng AO bằng định lý Pythagoras trong tam giác vuông AHO:

$AD^2 = AO^2 + OD^2 - 2 \cdot AO \cdot OD \cdot \cos{\angle AOD}$

Vì tam giác AOD cân tại O nên $\angle AOD = \frac{1}{2} \cdot \angle AOB$. Ta có thể tính được $\angle AOB$ bằng định lý cosin trong tam giác ABC:

$\cos{\angle AOB} = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC

15 tháng 8 2021

mọi người giúp e với ạ e đg cần gấp

15 tháng 8 2021

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm

 

 

11 tháng 12 2019

Áp dụng định lí Pytago cho tam giác vuông ABC, ta có BC=13cm => R=6,5cm

6 tháng 10 2019

Đáp án là C

Tam giác ABC có:

A B 2 + A C 2 = 12 2 + 16 2 = 400 = B C 2

⇒ ΔABC vuông tại A

⇒ Tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của BC

⇒ Bán kính = 10 cm