Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB và ΔDMC có:
\(AM=CM\) (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
\(BM=CM\) (M là trung điểm của BC)
\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)
b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)
\(\Rightarrow AB=DC\) (2 cạnh t.ứng)
c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)
\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow AB//CD\)
Xét tam giác AMC và tam giác DMB có:
AM =MD (gt )
BM =MC (gt )
goc MAC=goc MDB(so le trong)
=>Tam giac AMC=tam giac DMB(c.g.c)
Vì góc MAD và góc MDB là hai góc so le trong tạo bởi đường thẳng AD cắt AC và BD
=>AC //BD
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
bạn tự vẽ hình nha
vì \(\widehat{AMB}\) và \(\widehat{CMD}\) là 2 góc đối đỉnh
⇒\(\widehat{AMB}\) = \(\widehat{CMD}\)
Xét Δ AMB và Δ CMD, có:
\(\widehat{AMB}\) = \(\widehat{CMD}\) (cmt)
AM=MD (gt)
MA=MB( vì M là trung điểm BC)
⇒Δ AMB = Δ CMD (c.g.c)
⇒\(\widehat{MAB}=\widehat{MDC}\) (2 góc tương ứng)
Mà đây là 2 góc so le trong
⇔AB // CD( đpcm)
Bạn tự vẽ hình nha, mình lười lắm
❉Ta có: góc AMB = góc CMD ( 2 góc đối đỉnh )
❉Xét Δ AMB Δ CMD, ta có:
- AM = MD (gt)
- Góc AMB = CMD (cmt)
- MA = MB ( vì M là trung điểm của BC)
➤ Δ AMB = Δ CMD (c.g.c)
➤ Góc MAB = góc MDC (2 góc tương ứng)
mà đây lại là 2 góc sole trong ➢ AB // CD (đpcm)
\(\left\{{}\begin{matrix}BM=MC\\MD=MA\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{MCD}\)
Mà 2 góc này ở vị trí so le trong nên AB//CD