K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

AB = AC (gt)

=> Tam giác ABC cân tại A

AN = NB = \(\frac{AB}{2}\) (N là trung điểm của AB)

AM = MC = \(\frac{AC}{2}\) (M là trung điểm của AC)

mà AB = AC (tam giác ABC cân tại A)

=> AM = MC = AN = NB 

Xét tam giác ABM và tam giác ACN có:

AM = AN (chứng minh trên)

A là góc chung

AB = AC (tam giác ABC cân tại A)

=> Tam giác ABM = Tam giác ACN (c.g.c)

Xét tam giác BNC và tam giác CMB có:

BN = CN (chứng minh trên)

NBC = MCB (tam giác ABC cân tại A)

BC là cạnh chung

=> Tam giác BNC = Tam giác CMB (c.g.c)

b.

MB = ME (M là trung điểm của BE)

NC = NF (N là trung điểm của CF)

mà MB = NC (tam giác BNC = tam giác CMB)

=> ME = NF

ANF = BNC (2 góc đối đỉnh)

AME = CMB (2 góc đối đỉnh)

mà BNC = CMB (tam giác BNC = CMB)

=> ANF = AME

Xét tam giác ANF và tam giác AME có:

AN = AM (chứng minh trên)

ANF = AME (chứng minh trên)

NF = ME (chứng minh trên)

=> Tam giác ANF = tam giác AME (c.g.c)

=> AF = AE (2 cạnh tương ứng)

=> A là trung điểm của FE

c.

AM = AN (chứng minh trên)

=> Tam giác ANM cân tại A

=> \(ANM=\frac{180^0-NAM}{2}\) (1)

Tam giác ABC cân tại A

=> \(ABC=\frac{180^0-BAC}{2}\) (2)

Từ (1) và (2) 

=> ANM = ABC 

mà 2 góc này ở vị trí đồng vị

=> MN // BC

Xét tam giác ANF và BNC có:

AN = NB (N là trung điểm của AB)

ANF = BNC (2 góc đối đỉnh)

NF = NC (N là trung điểm của FC)

=> Tam giác ANF = Tam giác BNC (c.g.c)

=> FAN = CBN (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AF // BC

mà MN // BC (chứng minh trên)

=> EF // MN // BC

Chúc bạn học tốt ^^

17 tháng 7 2016

cảm ơn nhiều nhé ngaingung

7 tháng 2 2019

A B C D E K

Cm: a) Ta có : AD + DB = AB 

         AE + EC = AC

và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)

=> AD = DE = AE = EC

Xét t/giác ABE và t/giác ACD

có AB = AC (gt)

góc A: chung

AE = AD (cmt)

=> t/giác ABE = t/giác ACD (c.g.c)

b) Ta có: t/giác ABE = t/giác ACD (Cmt)

=> BE = CD (hai cạnh tương ứng)

c) Ta có: T/giác ABE = t/giác ACD (Cmt)

=> góc ABE = góc ACD (hai góc tương ứng)

Ta lại có: góc ADC + góc CDB = 1800 (kề bù)

                góc ADB + góc BEC = 1800 (kề bù)

và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)

=> góc BDC = góc BEC

Xét t/giác BDK và t/giác CEK

có góc KDB = góc CEK (cmt)

DE = EC (Cmt)

góc DBK = góc ECK (Cmt)

=> t/giác BDK = t/giác CEK (g.c.g)

=> BK = KC (hai cạnh tương ứng)

=> t/giác KEC là t/giác cân tại K

Cm: a) Ta có : AD + DB = AB 

         AE + EC = AC

và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)

=> AD = DE = AE = EC

Xét t/giác ABE và t/giác ACD

có AB = AC (gt)

góc A: chung

AE = AD (cmt)

=> t/giác ABE = t/giác ACD (c.g.c)

b) Ta có: t/giác ABE = t/giác ACD (Cmt)

=> BE = CD (hai cạnh tương ứng)

c) Ta có: T/giác ABE = t/giác ACD (Cmt)

=> góc ABE = góc ACD (hai góc tương ứng)

Ta lại có: góc ADC + góc CDB = 1800 (kề bù)

                góc ADB + góc BEC = 1800 (kề bù)

và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)

=> góc BDC = góc BEC

Xét t/giác BDK và t/giác CEK

có góc KDB = góc CEK (cmt)

DE = EC (Cmt)

góc DBK = góc ECK (Cmt)

=> t/giác BDK = t/giác CEK (g.c.g)

=> BK = KC (hai cạnh tương ứng)

=> t/giác KEC là t/giác cân tại K

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

14 tháng 4 2019

a, xét t.giác BMC và t.giác DMA có:

           BM=DM(gt)

          \(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đinh)

          AM=MC(gt)

=>t.giác BMC=t.giác DMA(c.g.c)

=>\(\widehat{ADM}\)=\(\widehat{MBC}\)mà 2 góc này ở vị trí so le nên AD//BC

b,xét t.giác MAB và t.giác MCD có:

            MA=MC(gt)

            \(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)

            MB=MD(gt)

=>t.giác MAB=t.giác MCD(c.g.c)

=>\(\widehat{MDC}\)=\(\widehat{MBA}\) mà 2 góc này ở vị trí so le nên AB//DC

xét t.giác DAB và t.giác DCB có:

          \(\widehat{ADB}\)=\(\widehat{CBD}\)(vì so le)

          DB cạnh chung

          \(\widehat{ABD}\)=\(\widehat{CDB}\)(vì so le)

=>t.giác DAB=t.giác DCB(g.c.g)

=>DA=DC

=>t.giác ACD cân tại D