K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

http://olm.vn/hoi-dap/question/432504.html

a: Xét ΔMAC có 

MI là đường cao

MI là đường trung tuyến

Do đó: ΔMAC cân tại M

=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=180^0-2\cdot\widehat{ACB}\left(1\right)\)

ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AMC}=\widehat{BAC}\)

b:

ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

 \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

=>\(\widehat{ABM}=180^0-\widehat{ABC}=180^0-\widehat{ACB}\left(3\right)\)

\(\widehat{CAN}+\widehat{CAM}=180^0\)(hai góc kề bù)

=>\(\widehat{CAN}+\widehat{ACB}=180^0\)

=>\(\widehat{CAN}=180^0-\widehat{ACB}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ABM}=\widehat{CAN}\)

Xét ΔABM và ΔCAN có

AB=CA

\(\widehat{ABM}=\widehat{CAN}\)

BM=AN

Do đó;ΔABM=ΔCAN

c: ΔABM=ΔCAN

=>NC=MA

mà MA=MC

nên NC=MC

\(\widehat{AMC}=\widehat{BAC}\)

mà \(\widehat{BAC}=45^0\)

nên \(\widehat{AMC}=45^0\)

Xét ΔCMN có CM=CN và \(\widehat{CMN}=45^0\)

nên ΔCMN vuông cân tại C

25 tháng 10 2016

thua

14 tháng 1 2017

a) tam giác ADM = tam giác ADN (cạnh góc vuông _ góc nhọn) 

(AD chung ; ADM^ = ADN^ = 90o; BAD^ = NAD^)

=> DM=DN (2 cạnh t/ứng)

Tam giác BDM = tam giác CDN (c.g.c)

(DB = DC ; BDM^ = CDN^ (đđ); DM = DN)

=> BM = CN (2 cạnh t/ứng)

b)  AM = c+ BM

AN = b- NC 

(hình như câu b là vậy ^^!)

25 tháng 11 2017

ai co nick face ko ket ban di

3 tháng 5 2020

Từ A kẻ đường phân giác nối A với D⇒∠A1=∠A2

       Xét ΔAMD và ΔAND có:

            ∠A1=∠A2 (cmt)

            AD chung

            ∠AMB=∠AND(=90độ)

⇒ ΔAMD=ΔAND(ch-gn)

⇒ MD=DC (2 cạnh tương ứng)

       Xét ΔBMD và ΔCND có:

              BD=DC(gt)

              ∠BMD=∠CND(=90độ)

              MD=DN(cmt)

⇒ ΔBMD=ΔCND(ch-cgv)

⇒ MB=NC (2 cạnh tương ứng)