Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAC có
MI là đường cao
MI là đường trung tuyến
Do đó: ΔMAC cân tại M
=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=180^0-2\cdot\widehat{ACB}\left(1\right)\)
ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{ACB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{AMC}=\widehat{BAC}\)
b:
ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)
\(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)
=>\(\widehat{ABM}=180^0-\widehat{ABC}=180^0-\widehat{ACB}\left(3\right)\)
\(\widehat{CAN}+\widehat{CAM}=180^0\)(hai góc kề bù)
=>\(\widehat{CAN}+\widehat{ACB}=180^0\)
=>\(\widehat{CAN}=180^0-\widehat{ACB}\left(4\right)\)
Từ (3) và (4) suy ra \(\widehat{ABM}=\widehat{CAN}\)
Xét ΔABM và ΔCAN có
AB=CA
\(\widehat{ABM}=\widehat{CAN}\)
BM=AN
Do đó;ΔABM=ΔCAN
c: ΔABM=ΔCAN
=>NC=MA
mà MA=MC
nên NC=MC
\(\widehat{AMC}=\widehat{BAC}\)
mà \(\widehat{BAC}=45^0\)
nên \(\widehat{AMC}=45^0\)
Xét ΔCMN có CM=CN và \(\widehat{CMN}=45^0\)
nên ΔCMN vuông cân tại C
a) tam giác ADM = tam giác ADN (cạnh góc vuông _ góc nhọn)
(AD chung ; ADM^ = ADN^ = 90o; BAD^ = NAD^)
=> DM=DN (2 cạnh t/ứng)
Tam giác BDM = tam giác CDN (c.g.c)
(DB = DC ; BDM^ = CDN^ (đđ); DM = DN)
=> BM = CN (2 cạnh t/ứng)
b) AM = c+ BM
AN = b- NC
(hình như câu b là vậy ^^!)
Từ A kẻ đường phân giác nối A với D⇒∠A1=∠A2
Xét ΔAMD và ΔAND có:
∠A1=∠A2 (cmt)
AD chung
∠AMB=∠AND(=90độ)
⇒ ΔAMD=ΔAND(ch-gn)
⇒ MD=DC (2 cạnh tương ứng)
Xét ΔBMD và ΔCND có:
BD=DC(gt)
∠BMD=∠CND(=90độ)
MD=DN(cmt)
⇒ ΔBMD=ΔCND(ch-cgv)
⇒ MB=NC (2 cạnh tương ứng)