K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

Áp dụng đlý Pytago vào tam giác ABC:

AC2=BC2+AB2

52=42+32

52=25

Vậy tam giác ABC là tam giác vuông tại B (dpcm)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

24 tháng 3 2021

 Xét ΔABD vuông tại A

       ΔEBD vuông tại E

CÓ : BD : CẠNH HUYỀN CHUNG

\(\widehat{ABD}=\widehat{EBD}\) (D LÀ TIA PHÂN GIÁC CỦA GÓC B)

⇒ΔABD= ΔEBD (CẠNH HUYỀN-CẠNH GÓC VUÔNG)

C)XÉT ΔDAI VUÔNG TẠI A

ΔDEC VUÔNG TẠI E 

CÓ: \(\widehat{A}=\widehat{E}\)(GT)

AD=CD(ΔABD= ΔEBD)

\(\widehat{ADI}=\widehat{EDC}\) (ĐỐI ĐỈNH)

⇒ΔDAI=ΔDEC (G-C-G)

⇒DI = CD 

⇒ΔIDC CÂN TẠI D 

a: BC=5cm
AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC>DE

29 tháng 3 2018

người ta bảo là ko biết ok

29 tháng 3 2018

thích thì nói thôi ý kiến à

5 tháng 5 2018

xét tam giác adf và tam giác edc ta có

   da=de (giải câu b)

góc fda = góc cde ( 2 góc đối đỉnh)

 góc a= góc e

vậy tam giác adf = tam giác edc(g.c.g)

=>df=dc(2 cạnh tương ứng)(1)

xét tam giác dec vuông tại e ta có

dc>de(dc là cạnh huyền)(2)

từ (1)và (2) =>df=de

10 tháng 5 2016

a)Ta có: BC2=52=25 (1)

AB2+AC2=32+42=25 (2)

Từ (1);(2)=>BC2=AB2+AC2(=25)

=>tam giác ABC vuông tại A (PyTaGo đảo)

b)Xét tam giác ABD vuông ở A và tam giác EBD vuông ở E(vì DE _|_ BC) có:

BD:cạnh chung

^ABD=^EBD (vì BD là phân giác của ^ABE)

=>tam giác ABD=tam giác EBD(ch-gn)

=>DA=DE (cặp cạnh t.ứ)

b)Xét tam giác ADF có: DF>DA (cạnh huyền>cạnh góc vuông)

Mà DA=DE(cmt)

=>DF>DE

10 tháng 5 2016

Xét tam giác ADF vuông ở A và tam giác EDC vuông ở E có:

DA=DE(cmt)

^ADF=^EDC (2 góc đối đỉnh)

=>tam giác ADF=tam giác EDC (cgv-gnk)

=>DF=DC (cặp cạnh t.ứ)

DF ko bằng DE bn nhé!

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-ab-3cm-ac-5cm-bc-4cm-a-chung-minh-tam-giac-abc-vuong-tai-b-b-ve-phan-giac

Xem tại link này (mình gửi cho)

Học tốt!!!!!!!!!!!!!!!!