K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{DBF}=\widehat{DEC}\)

Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

b: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

c: Ta có: ΔDBF=ΔDEC

=>\(\widehat{BDF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{EDB}=180^0\)

nên \(\widehat{BDF}+\widehat{EDB}=180^0\)

=>E,D,F thẳng hàng

d: ta có: ΔDBF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của FC(1)

ta có: AF=AC

=>A nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra AD là đường trung trực của CF

=>AD\(\perp\)CF

29 tháng 11 2016

THANH TRÚC GIÚP MIK GIẢI ĐỐ

25 tháng 4 2017

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

28 tháng 11 2017

a)   Xét tam giác ABD và tam giác AED có:

             AB=AE (GT)

             góc BAD = góc EAD (AD là tia phân giác)

             AD chung

      Suy ra tam giác ABD=tam giác AED(CGC)

      Suy ra BD=BE (hai cạnh tương ứng)

      Xét tam giác AFD và tam giác ACD có:

             AF=AC(GT)

             Góc FAD= góc CAD (AD là tia phân giác của góc A)

             AD chung

       suy ra tam giác AFD và tam giác ACD(CGC)

       suy ra DF=DC(2 cạnh tương ứng)

       vì AB+BF=AE+EC (AF=AC)

       Mà AB=AE(GT)

       Suy ra BF=EC

       Xet tam giác BFD và tam giác ECD có:

             DB=DE(CMT)

             DF=DC(CMT)

             BF=EC(CMT)

      Suy ra tam giac BFD=tamgiác ECD (CCC)

b)   BF=EC (CMT)

c)    vì tam giác BFD=tam giác ECD (CMT)

       Suy ra gócBDF= gócEDC(2 GÓC TƯƠNG  ỨNG)

       Mà 2 góc này ở vị trí đối đỉnh 

       suy ra 3 điểm F,D,E  thẳng hàng

d)    xét tam giác AFD có:

       AF=EC(GT)

       Suy ra tam giác AFC cân tại A

      mà AD là tia phân giac của góc A(gt)

      suy ra AD cũng là đường cao của tam giác FAC

      hay AD vuông góc FC