Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét Δ ADB và Δ ADE có:
AD chung
góc BAD = góc EAD
AB = AE
⇛Δ ADB =Δ ADE(c-g-c)
Hình bạn tự vẽ nhé.
a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)
nên \(\widehat{BAD}=\widehat{CAD}\)
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD là cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)
AB = AC
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\) (đpcm)
b. Gọi giao điểm của MN và AD là S
Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)
Xét \(\Delta AMS\) và \(\Delta ANS\) có:
AS là cạnh chung
\(\widehat{MAS}=\widehat{NAS}\) (chứng minh trên)
AM = AN (gt)
\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)
Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AS\perp MN\)
hay \(AD\perp MN\) (đpcm)
c. Ta có: AM = AN (gt)
\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\) (định lí)
hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\) (1)
Lại có: AB = AC (gt)
\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)
\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí) (2)
Từ (1), (2)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị
\(\Rightarrow\) MN // BC (dấu hiệu nhận biết) (*)
Xét \(\Delta MOP\) và \(\Delta BDO\) có:
MO = BO (vì O là trung điểm của BM)
\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)
OD = PO (gt)
\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)
\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\) MP // BC (dấu hiệu nhận biết) (**)
Từ (*), (**)
\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC (trái với tiên đề Ơ-clit)
\(\Rightarrow\) 3 điểm P, M, N thẳng hàng (đpcm)
a, xet tam giac ADB va tam giac EBD co:
goc ABD = goc EBD (vi BD la tia phan giac cua goc B)
BD chung
goc BAD = goc BED (=90 do)
suy ra tam giac ADB = tam giac EBD
b,vi tam giac ABC la tam giac vuong nen theo dinh ly pi-ta-go ta co:
BC^2 = AB ^2 + AC^2
= 6^2 + 8^2
= 36+64
=100 suy ra BC = 10
ta co tam giac ABC = tam giac EBD nen AB = BE = 6
ta co EC = BC - BE
= 10 - 6
=4
c,d ban tu lm
a, Xét tam giác ADB và tam giác ADE có:
AD chung
góc BAD = góc EAD
AB = AE
=> Tam giác ADB = tam giác ADE
b, Câu này mình sửa lại đề là AD là trung trực của BE mới đúng nhé!
Từ câu a => BD = BE => D thuộc trung trực của BE (1)
Ta có AB = AE => A thuộc trung trực của BE (2)
Từ 1 và 2 suy ra AD là trung trực của BE
c, Từ câu a nên ta có góc ABD = góc AED => góc FBD = góc CED (cùng bù với 2 góc = nhau)
Xét tam giác FBD và tam giác CED có:
góc FBD = góc CED
BD = ED
góc BDF = góc EDC (đối đỉnh)
=> tam giác FBD = tam giác CED (g.c.g)
=> góc DBF = góc DEC (góc tương ứng)
mình sửa lại đề là góc BFD = góc ECD nhé!
=> góc BFD = góc ECD (góc tương ứng)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Xét ΔAMF vuông tại F và ΔADF vuông tại F có
AF chung
MF=DF
Do đó: ΔAMF=ΔADF
=>góc MAF=góc DAF
=>góc DAF=góc BAM