K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

nên MN là đường trung bình

=>MN//BC và MN=1/2BC

hay MN//HK(1)

Xét ΔABC có

M.K lần lượt là tđiểm của BA và BC

nên MK là đường trung bình

=>MK=AC/2=NH(2)

Từ (1) và (2) suy ra MNKH là hình thang can

b: Xét ΔAED có

H,K lần lượt là trung điểm của AE,AD

nên HK là đường trung bình

=>BC//ED(3)

Xét tứ giác ABDC có

K là trung điểm chung của DAvà BC

nên ABDC là hình bình hành

SUy ra: BD=AC=CE(4)

Từ (3) và (4) suy ra BCDE là hình thang cân

11 tháng 8 2018

qưertyui9opasdfghjkl

11 tháng 8 2018

a,Xét tam giác AHB trung tại H có  HM là đường  trung tuyến nên HM =2AB (1)

Trong tam giác ABC có N là trug điểm của AC, O và K là trug điểm của BC nên NK là đường trng bình của tam giác ABC => NK =2AB

Từ (1) và (2), ta có HM=NK

b, Trong tam giác AHC vuông tại H có HN là đường trung tuyến nên HN=AC (3)

Tam giác ABC có M là trung điểm của AB và K là trung điển của BC nên MK là đường trug bình của tam giác ABC => MK=AC (4)

Từ (3) VÀ (4) ,ta có HN = 2MK

Tam giác ABC có M là trung điểm của AB và N là trung điểm của AC nên MN là đường trung bình của tam giác ABC =>MN//BC hay MN=KH =>MNKH là hình thang .Từ (a) và (b), MNKH là hình thang cân.

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

Xét \(\Delta ABC\)có :

M là trung điểm AB

N là trung điểm AC

=> MN là đường trung bình 

=> MN // BC , MN = \(\frac{BC}{2}\)

Xét \(\Delta AHC\)có :

HN là trung tuyến 

=> HN = AN = NC = \(\frac{AC}{2}\)

Xét \(\Delta ABC\)có :

M là trung điểm AB 

K là trung điểm BC 

=> MK là đường trung bình 

=> MK // AC , MK = \(\frac{AC}{2}\)

=> MK = NH 

Xét tứ giác MNKH có : 

MN//HK

MK = NH 

=> MNKH là hình thang cân 

b) Xét \(\Delta AED\)có :

H là trung điểm AE

K là trung điểm AD

=> HK là đường trung bình 

=> HK // ED 

Xét \(\Delta ACE\)có :

HC là trung trực 

=> \(\Delta ACE\)cân tại C

=> AC = CE

Xét tứ giác ACDB có :

K là trung điểm BC 

K là trung điểm AD

=> ACDB là hình hình hành 

=> AC = BD 

Mà CE = AC (cmt)

=> BD =CE

Mà BC // ED

=> BCDE là hình thang cân