K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2019

A C D G E B

Do 3 điểm G, E, B thẳng hàng, áp đụng định lý Menelaus cho tam giác ADC ta có:

\(\frac{GA}{GC}.\frac{BC}{BD}.\frac{ED}{EA}=1\)

Thay số: \(\frac{4}{10}.\frac{9}{3}.\frac{ED}{EA}=1\Rightarrow EA=2ED\)

\(\Rightarrow\frac{EA}{AD}=\frac{2}{3}\)

điểm M ở đâu vậy bạn?

26 tháng 1 2022

cm mik vt nhầm sorry

12 tháng 1 2022

tôi xin chịu :))))))))

Dũng NguyễnphynitDƯƠNG PHAN KHÁNH DƯƠNGNguyễn Thị Ngọc Thơ nhờ mấy bn và thầy giải dùm em bài ni cái

5 tháng 3 2019

hình như cái đề sai

xem lại r sửa đi nếu có thể me làm cho

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{4}=\dfrac{CD}{6}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4}=\dfrac{CD}{6}=\dfrac{AD+CD}{4+6}=\dfrac{AC}{10}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{4}=\dfrac{1}{2}\\\dfrac{CD}{6}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=2\left(cm\right)\\CD=3\left(cm\right)\end{matrix}\right.\)

Vậy: AD=2cm; CD=3cm

a: Xét ΔABC và ΔADE có

AB/AD=AC/AE

góc A chung

=>ΔABC đồng dạng với ΔADE

b: ΔBAC đồng dạng với ΔDAE

=>góc ABC=góc ADE

=>BC//DE

c: AE+EC=AC

=>EC=8cm

BE là phân giác góc ABC

=>AB/AE=BC/CE

=>BC/8=9/4

=>BC=18cm

d: DE//BC

=>DE/BC=AE/AC=1/3

=>DE/18=1/3

=>DE=6cm