K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔNMC có

H là trung điểm của MN

F là trung điểm của MC

Do đó:HF là đường trung bình

=>HF//NC và HF=NC/2(1)

Xét ΔNBC có

G là trung điểm của BN

E là trung điểm của BC

Do đóGE là đường trung bình

=>GE//NC và GE=NC/2(2)

Từ (1) và (2) suy ra HF=GE và HF//GE

Xét ΔNMB có

H là trung điểm của NM

G là trung điểm của NB

DO đó: HG là đường trung bình

=>HG=MB/2=NC=HF

Xét tứ giác EFHG có

HF//GE

HF=GE

Do đó:EFHG là hình bình hành

mà HF=HG

nên EFHG là hình thoi

b: Để EFGH là hình vuông thì HF vuông góc với HG

=>AB vuông góc với AC

7 tháng 10 2021

\(a,\left\{{}\begin{matrix}AE=EB\\AF=FC\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC

\(\Rightarrow EF//BC\Rightarrow BEFC\) là hthang 

\(b,EF//BC\Rightarrow EF//GH\Rightarrow EFGH\) là hthang

Có HF là trung tuyến ứng cạnh huyền tam giác AHC nên \(HF=\dfrac{1}{2}AC\)

Mà \(\left\{{}\begin{matrix}AE=EB\\BG=GC\end{matrix}\right.\Rightarrow EG\) là đtb tg ABC \(\Rightarrow EG=\dfrac{1}{2}AC\)

Do đó \(HF=EG\) nên EFGH là hthang cân

a: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên H là trung điểm của BC

Xét ΔABC có 

H là trung điểm của BC

N là trung điểm của AC
Do đó: HN là đường trung bình của ΔABC

Suy ra: HN//AB và \(HN=\dfrac{AB}{2}\)

hay HN//AM và HN=AM

Xét tứ giác AMHN có 

HN//AM

HN=AM

Do đó: AMHN là hình bình hành

mà AM=AN

nên AMHN là hình thoi

a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)

AN+NC=AC(N nằm giữa A và C)

mà MB=NC(gt)

và AB=AC(ΔABC cân tại A)

nên AM=AN

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)

mà hai góc này là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Xét tứ giác MNBC có MN//BC(cmt)

nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

c) Xét ΔAMN có 

E là trung điểm của AM(gt)

F là trung điểm của AN(gt)

Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)

Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà MN//BC(cmt)

nên EF//BC(3)

Xét hình thang MNCB(MN//CB) có 

H là trung điểm của MB(gt)

G là trung điểm của NC(gt)

Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)

Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)

Từ (3) và (4) suy ra EF//HG

Ta có: HG//BC(cmt)

nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{EHG}=\widehat{FGH}\)

Xét tứ giác EFGH có EF//HG(cmt)

nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)

Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)

nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

30 tháng 10 2021

a: Xét ΔDEB có

P là trung điểm của DE

Q là trung điểm của BE

Do đó: PQ là đường trung bình của ΔDEB

Suy ra: PQ//DB và \(PQ=\dfrac{DB}{2}\left(1\right)\)

Xét ΔDCB có 

N là trung điểm của CD

M là trung điểm của BC

Do đó: NM là đường trung bình của ΔDCB

Suy ra: NM//DB và \(NM=\dfrac{DB}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//PQ và NM=PQ

hay NMQP là hình bình hành

11 tháng 11 2017

a)Xét tứ giác AMDN có: góc AMD=900

góc MAN=900

góc DNA=900

=> Tứ giác AMDN là hình chữ nhật(dhnb hcn)

b)Xét tam giác ABC vuông tại A có:D là trung điểm của BC

=>AD là đường trung tuyến ứng với cạnh huyền BC

=>AD=BD=CD=BC/2

=> tg ACD cân tại D

Xét tg ACD cân tại D có: DN là đường cao

=>DN là đường trung tuyến của tam giác ADC

=>N là trung điểm của AC