Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
Ý cuối câu b.
Sử dụng công thức tính diện tích tam giác ABC. Ta có:
\(\frac{1}{2}AB.\sin\widehat{A}.AC=\frac{1}{2}AH.BC\)
=> \(AB.\sin\widehat{A}.AC=AH.BC\)
Ta đã tính được: \(AH=3\sqrt{3};AB=6;AC=2\sqrt{13};MN=\frac{18\sqrt{13}}{13};BC=8\) ( để tính MN sử dụng tam giác đồng dạng ở câu b ý 1 nha)
=> \(\sin\widehat{A}.AH=\frac{AH^2.BC}{AB.AC}=\frac{18\sqrt{13}}{13}=MN\)
a, Ta có: $HM⊥AB;HN⊥AC$
$⇒\widehat{HMA}=\widehat{HNA}=90^o$
$⇒\widehat{HMA}+\widehat{HNA}=180^o$
$⇒$ Tứ giác $AMHN$ nội tiếp (Tổng 2 góc đối $=180^o$)
b, Xét tam giác $AHB$ vuông tại $H$
Đường cao $HM$ (do $HM⊥AB$)
Nên $AH^2=AM.AB(1)$
Xét tam giác $AHC$ vuông tại $H$
Đường cao $HN$ (do $HN⊥AB$)
Nên $AH^2=AN.AC(2)$
Từ $(1)(2)⇒AM.AB=AN.AC$
$⇒\dfrac{AM}{AC}=\dfrac{AN}{AB}$
Xét tam giác $AMN$ và tam giác $ACB$ có:
$\dfrac{AM}{AC}=\dfrac{AN}{AB}$
$\widehat{A}$ chung
$⇒$ tam giác $AMN$ $\backsim$ tam giác $ACB(c.g.c)$
(đpcm)
c, tam giác $AMN$ $\backsim$ tam giác $ACB$
$⇒\widehat{ANM}=\widehat{ABC}$
Xét $(O)$ có: $\widehat{ABC}=\widehat{AEC}$ (các góc nội tiếp cùng chắn cung $AC$)
Nên $\widehat{ANM}=\widehat{AEC}$
Hay $\widehat{ANI}=\widehat{IEC}$
$⇒$ Tứ giác $CEIN$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)
c, Ta có: $\widehat{ANM}=\widehat{ABC}$
Mà $\widehat{ABC}+\widehat{AKC}=180^o$
do tứ giác $ABCK$ nội tiếp $(O)$
Nên $\widehat{ANM}+\widehat{AKC}=180^o$
Mà $\widehat{ANM}+\widehat{ANK}=180^o$
Nên $\widehat{AKC}=\widehat{ANK}$
Xét tam giác $AKC$ và tam giác $ANK$ có:
$\widehat{AKC}=\widehat{ANK}$
$\widehat{A}$ chung
nên tam giác $AKC$ $\backsim$ tam giác $ANK(g.g)$
$⇒\dfrac{AK}{AN}=\dfrac{AC}{AK}$
$⇒AK^2=AN.AC$
mà $AH^2=AN.AC(cmt)$
$⇒AK^2=AH^2$
hay $AK=AH$
suy ra tam giác $AHK$ cân tại $A$
Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
tick cho mình đi rồi mình gửi bài cho còn không tick thì mình không bày đâu nhé
5 năm rồi anh ấy vẫn chưa có câu trả lời