Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: E và D đối xứng nhau qua AB(gt)
nên AB là đường trung trực của ED
Suy ra: AD=AE(1) và BD=BE
Ta có: F và D đối xứng nhau qua AC(gt)
nên AC là đường trung trực của FD
Suy ra: AD=AF(2) và CD=CF
Từ (1) và (2) suy ra AE=AF
b) Xét ΔABE và ΔABD có
AB chung
AE=AD(cmt)
BE=BD(cmt)
Do đó: ΔABE=ΔABD(c-c-c)
Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)
Xét ΔADC và ΔAFC có
AD=AF(cmt)
AC chung
DC=FC(cmt)
Do đó: ΔADC=ΔAFC(c-c-c)
Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)
Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot60^0=120^0\)
a) Ta có: E và D đối xứng nhau qua AB(gt)
nên AB là đường trung trực của ED
Suy ra: AD=AE(1) và BD=BE
Ta có: F và D đối xứng nhau qua AC(gt)
nên AC là đường trung trực của FD
Suy ra: AD=AF(2) và CD=CF
Từ (1) và (2) suy ra AE=AF
b) Xét ΔABE và ΔABD có
AB chung
AE=AD(cmt)
BE=BD(cmt)
Do đó: ΔABE=ΔABD(c-c-c)
Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)
Xét ΔADC và ΔAFC có
AD=AF(cmt)
AC chung
DC=FC(cmt)
Do đó: ΔADC=ΔAFC(c-c-c)
Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)
Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot60^0=120^0\)
a) Ta có: E và D đối xứng nhau qua AB(gt)
nên AB là đường trung trực của ED
Suy ra: AD=AE(1) và BD=BE
Ta có: F và D đối xứng nhau qua AC(gt)
nên AC là đường trung trực của FD
Suy ra: AD=AF(2) và CD=CF
Từ (1) và (2) suy ra AE=AF
b) Xét ΔABE và ΔABD có
AB chung
AE=AD(cmt)
BE=BD(cmt)
Do đó: ΔABE=ΔABD(c-c-c)
Suy ra: ˆEAB=ˆDAB(hai góc tương ứng)
Xét ΔADC và ΔAFC có
AD=AF(cmt)
AC chung
DC=FC(cmt)
Do đó: ΔADC=ΔAFC(c-c-c)
Suy ra: ˆDAC=ˆFAC(hai góc tương ứng)
Ta có: ˆEAF=ˆEAB+ˆBAD+ˆCAD+ˆFAC
=2⋅(ˆBAD+ˆCAD)
=2⋅600=1200
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Ta có: AE=AD
AF=AD
Do đó: AE=AF
b: Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
c: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
Một bài đã làm không xong mà bạn ra hai bài thì ............
Bài 1: Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Bài 1:
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
AE=AD
AF=AD
Do đó: AE=AF
b: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
Bài 1:
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
AE=AD
AF=AD
Do đó: AE=AF
b: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
AE=AD
AF=AD
Do đó: AE=AF
b: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
a) Ta có: E và D đối xứng nhau qua AB(gt)
nên AB là đường trung trực của ED
hay AE=AD(1) và BD=BE
Ta có: D và F đối xứng nhau qua AC(gt)
nên AC là đường trung trực của DF
hay AD=AF(2) và CD=CF
Từ (1) và (2) suy ra AE=AF
b) Xét ΔAEB và ΔADB có
AE=AD(cmt)
AB chung
BE=BD(cmt)
Do đó: ΔAEB=ΔADB(c-c-c)
Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)
Xét ΔADC và ΔAFC có
AD=AF(cmt)
AC chung
CD=CF(cmt)
Do đó: ΔADC=ΔAFC(c-c-c)
Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)
Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot60^0=120^0\)