Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
góc BAM chung
=>ΔABM đồng dạng với ΔACN
b: ΔABM đồng dạng với ΔACN
=>AM/AN=AB/AC
=>AM/AB=AN/AC
mà góc MAN chung
nen ΔAMN đồng dạng với ΔABC
c: Xét ΔBKH vuông tại K và ΔBMC vuông tại M có
góc KBH chung
=>ΔBKH đồng dạng với ΔBMC
=>BK/BM=BH/BC
=>BK*BC=BH*BM
Xét ΔCKH vuông tại K và ΔCNB vuông tại N có
góc KCH chung
=>ΔCKH đồng dạng với ΔCNB
=>CK/CN=CH/CB
=>CK*CB=CH*CN
=>BH*BM+CH*CN=BK*BC+CK*BC=BC^2
d: ΔANM đồng dạng với ΔABC
=>\(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AN}{AB}\right)^2=\dfrac{1}{4}\)
=>ĐPCM
hình tự kẻ ạ :3
a)
xét ΔABE và ΔACF có:
\(\left\{{}\begin{matrix}\widehat{A}\left(chung\right)\\\widehat{AFC}=\widehat{AEB}=90^0\left(CF\perp AB;BE\perp AC\right)\end{matrix}\right.\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{AB}=\dfrac{AF}{AE}\Leftrightarrow AC.AE=AB.AF\)
a: Xét ΔAHF vuông tại F và ΔABD vuông tại D có
\(\widehat{HAF}\) chung
Do đó: ΔAHF∼ΔABD
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
c: Xét tứ giác BFHD có
\(\widehat{BFH}+\widehat{BDH}=180^0\)
Do đó: BFHD là tứ giác nội tiếp
Suy ra: \(\widehat{ABE}=\widehat{ADF}\)